|
Material Sciences 2022
智能磁流变液的制备及应用研究进展
|
Abstract:
进入新世纪智能材料发展迅速,其中智能材料领域研究最为活跃的当属磁流变液。它一般由磁性颗粒、基液、添加剂组成。当磁流变液外部存在磁场时,其会呈现从低粘度的牛顿流体到高粘度的宾汉流体的转变。磁流变液具有转换耗能低、易于控制且响应迅速的特点,被广泛应用于离合器、阻尼器和传感器等领域。本文详细介绍了磁流变液智能材料的制备、作用机理和应用领域等方面的研究进展。
In the new century, intelligent materials have developed rapidly, among which magnetorheological fluid is the most active research field. It is generally composed of magnetic particles, base fluid and additives. When there is a magnetic field applied to the magnetorheological fluid, it will change from a low viscosity Newtonian fluid to a high viscosity Bingham fluid. Magnetorheological fluid is widely used in the clutch, damper, sensor and other fields because of its low energy consumption, easy control and rapid response. In this paper, the preparation, mechanism and application of magnetorheological fluid intelligent materials are introduced in detail.
[1] | 侯中福. 新型磁流变液制备与其流变性能分析[J]. 大众标准化, 2020(16): 87-88. |
[2] | Ashtiani, M., Hashemabadi, S.H. and Ghaffari, A. (2015) A Review on the Magnetorheological Fluid Preparation and Stabilization. Journal of Magnetism and Magnetic Materials, 374, 716-730. |
[3] | https://doi.org/10.1016/j.jmmm.2014.09.020 |
[4] | Rabbani, Y., Ashtiani, M. and Hashemabadi, S.H. (2015) An Experimental Study on the Effects of Temperature and Magnetic Field Strength on the Magnetorheological Fluid Stability and MR Effect. Soft Matter, 11, 4453-4460. |
[5] | https://doi.org/10.1039/C5SM00625B |
[6] | 侯中福. 一种低密度高稳定性磁流变液制备与性能分析[J]. 科技创新与应用, 2020(27): 51-52. |
[7] | Rajalakshmi, R., Remya, K.P., Viswanathan, C. and Ponpandian, N. (2021) Enhanced Electrochemical Activities of Morphologically Tuned MnFe2O4 Nanoneedles and Nanoparticles Integrated on Reduced Graphene Oxide for Highly Efficient Supercapacitor Electrodes. Nanoscale Advances, 3, 2887-2901. https://doi.org/10.1039/D1NA00144B |
[8] | 李海涛, 彭向和, 何国田. 磁流变液机理及行为描述的理论研究现状[J]. 材料导报, 2010, 24(3): 121-124. |
[9] | 黄仕彪. 磁流变液发热机理综述及其影响因素[J]. 现代机械, 2021(2): 89-92. |
[10] | Qiao, X.Y., Bai, M.W., Tao, K., et al. (2009) Magnetorheological Behavior of Polyethyene Glycol-Coated Fe3O4 Ferro?uids. Journal of the Society of Rheology, 10, 23-31. https://doi.org/10.1678/rheology.38.23 |
[11] | 张燕丽. 磁流变材料的研究与应用进展[J]. 化学工程与装备, 2017(10): 192-194. |
[12] | 史宇. 浅谈智能材料-磁流变液在智能制造中的应用[J]. 科学技术创新, 2022(22): 17-20. |
[13] | 李耀光. 基于压电分流阻尼的车内噪声控制研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2012. |
[14] | 张新刚. 磁流变阻尼器在结构振动控制中的应用研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2004. |
[15] | 胡国良, 吴礼繁. 磁流变制动器结构设计研究现状分析[J]. 华东交通大学学报, 2020, 37(5): 1-8. |
[16] | Shilan, S.T., Mazlan, S.A., Ido, Y., et al. (2016) A Comparison of Field-Dependent Rheological Properties between Spherical and Plate-Like Carbonyl Iron Particles-Based Magneto-Rheological Fluids. Smart Materials and Structures, 25, Article ID: 095025. https://doi.org/10.1088/0964-1726/25/9/095025 |
[17] | 马宗桥. 面向半导体晶圆超精密抛光的磁流变抛光液制备及其特性研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2021. |
[18] | 王书友, 肖鹿, 陈飞, 孟德远, 田祖织, 李艾民, 吴向凡. 磁流变离合器非线性迟滞特性试验与建模[J]. 中南大学学报(自然科学版), 2022, 53(6): 2049-2059. |
[19] | 熊皓, 罗一平, 王维成, 王磊, 姜彦文. 不同HLB值的表面活性剂对磁流变液沉降稳定性能的影响[J]. 功能材料, 2019, 50(12): 12126-12131, 12136. |