全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

碱激发多元复合胶凝材料研究进展
Research Progress of Alkali Activated Multi-Component Composite Cementitious Materials

DOI: 10.12677/MS.2022.1211131, PP. 1184-1190

Keywords: 碱激发,多元复合,水化机理,制备,性能研究
Alkali Activated
, Multi-Component Composite, Hydration Mechanism, Preparation, Performance Study

Full-Text   Cite this paper   Add to My Lib

Abstract:

为实现“碳中和”的目标以及工业废渣的合理利用,绿色建筑材料的应用将逐渐成为主流,其中,碱激发材料成为研究的热点。本文通过水化过程、产物和微观结构阐述碱激发多元复合胶凝材料的水化机理,介绍各类材料的特点和制备方法,总结碱激发矿渣/粉煤灰基复合体系、偏高岭土基复合体系、赤泥基复合体系的性能,包括强度、流动度、凝结时间、固化性等。对今后碱激发多元复合胶凝材料的开发和应用提供一定的参考,并对未来的研究重点提出建议。
In order to achieve the goal of “carbon neutralization” and the rational utilization of industrial waste residue, the application of green building materials will gradually become the mainstream, among which alkali activated materials become the research focus. This paper describes the hydration mechanism of alkali activated multi-component composite cementitious materials through the hydration process, products and microstructure, introduces the characteristics and preparation methods of various materials, and summarizes the properties of alkali activated slag/fly ash-based composite systems, metakaolin-based composite systems, and red mud based composite systems, including strength, fluidity, setting time, solidification, etc. It provides some reference for the development and application of alkali activated multi-component cementitious materials in the future, and puts forward suggestions for future research focus.

References

[1]  Tayeh, B.A., Hamada, H.M., Almeshal, I., et al. (2022) Durability and Mechanical Properties of Cement Concrete Comprising Pozzolanic Materials with Alkali-Activated Binder: A Comprehensive Review. Case Studies in Construction Materials, 17, e1429.
https://doi.org/10.1016/j.cscm.2022.e01429
[2]  Zhou, S., Tan, C., Gao, Y., et al. (2021) One-Part Alkali Activated Slag Using Ca(OH)2 and Na2CO3 Instead of NaOH as Activator: More Excellent Compressive Strength and Microstructure. Materials Research Express, 8, Article ID: 085501.
https://doi.org/10.1088/2053-1591/ac16f4
[3]  Komljenovi?, M.M., Ba??arevi?, Z., Marjanovi?, N., et al. (2012) Decalcification Resistance of Alkali-Activated Slag. Journal of Hazardous Materials, 233-234, 112-121.
https://doi.org/10.1016/j.jhazmat.2012.06.063
[4]  郑文忠, 邹梦娜, 王英. 碱激发胶凝材料研究进展[J]. 建筑结构学报, 2019, 40(1): 28-39.
[5]  宋维龙, 朱志铎, 浦少云, 等. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
[6]  张兰芳. 碱激发矿渣水泥和混凝土[M]. 成都: 西南交通大学出版社, 2018.
[7]  Yin, B., Kang, T., Kang, J., et al. (2018) Analysis of Active Ion-Leaching Behavior and the Reaction Mechanism during Alkali Activation of Low-Calcium Fly Ash. International Journal of Concrete Structures and Materials, 12, Article No. 50.
https://doi.org/10.1186/s40069-018-0282-3
[8]  Sun, J., Zhang, Z., Zhuang, S., et al. (2020) Hydration Properties and Microstructure Characteristics of Alkali-Activated Steel Slag. Construction and Building Materials, 241, Article ID: 118141.
[9]  
https://doi.org/10.1016/j.conbuildmat.2020.118141
[10]  Nailia, R.R., Ravil, Z.R., Natalia, I.N., et al. (2016) Influence of Limestone Content, Fineness, and Composition on the Properties and Microstructure of Alkali-Activated Slag Cement. Cement and Concrete Composites, 72, 268-274.
[11]  
https://doi.org/10.1016/j.cemconcomp.2016.06.015
[12]  杜天玲, 刘英, 于咏妍, 等. 水玻璃对粉煤灰矿渣地聚合物强度的影响及激发机理[J]. 公路交通科技, 2021, 38(1): 41-49.
[13]  Bernal, S.A., Provis, J.L., Walkley, B., et al. (2013) Gel Nanostructure in Alkali-Activated Binders Based on Slag and Fly Ash, and Effects of Accelerated Carbonation. Cement and Concrete Research, 53, 127-144.
[14]  
https://doi.org/10.1016/j.cemconres.2013.06.007
[15]  蒋勇, 贾陆军, 文梦媛, 等. 碱激发粉煤灰/钢渣胶凝材料的制备[J]. 硅酸盐通报, 2019, 38(7): 2152-2156.
[16]  吴旻, 谢胜华, 葛根旺. 碱激发钢渣矿渣复合基层材料的强度特性及微观机制[J]. 硅酸盐通报, 2021, 40(8): 2640-2646.
[17]  Ismail, I., Bernal, S.A., Provis, J.L., et al. (2014) Modification of Phase Evolution in Alkali-Activated Blast Furnace Slag by the Incorporation of Fly Ash. Cement and Concrete Composites, 45, 125-135.
[18]  
https://doi.org/10.1016/j.cemconcomp.2013.09.006
[19]  Zhang, Z., Xie, C., Sang, Z., et al. (2022) Mechanical Properties and Microstructure of Alkali-Activated Soda Residue-Blast Furnace Slag Composite Binder. Sustainability, 14, Article No. 11751.
https://doi.org/10.3390/su141811751
[20]  Aemail, H.E.C.C., Shehab, E. and Al-Sallamin, A. (2021) Effect of Curing Regime on the Performance and Microstructure Characteristics of Alkali-Activated Slag-Fly Ash Blended Concrete. Journal of Sustainable Cement-Based Materials, 10, 289-317.
https://doi.org/10.1080/21650373.2021.1883145
[21]  Zhu, C., Wan, Y., Wang, L., et al. (2022) Strength Characteristics and Microstructure Analysis of Alkali-Activated Slag-Fly Ash Cementitious Material. Materials, 15, Article No. 6169.
https://doi.org/10.3390/ma15176169
[22]  Park, S.M., et al. (2016) Physicochemical Properties of Binder Gel in Alkali-Activated Fly Ash/Slag Exposed to High Temperatures. Cement and Concrete Research, 89, 72-79.
https://doi.org/10.1016/j.cemconres.2016.08.004
[23]  何瑞征, 黄吉意, 钱亚, 等. 玄武岩石粉-矿渣碱激发胶凝材料的制备研究[J]. 新型建筑材料, 2019, 46(11): 115-118.
[24]  Chi, M. and Huang, R. (2013) Binding Mechanism and Properties of Alkali-Activated Fly Ash/Slag Mortars. Construction and Building Materials, 40, 291-298.
https://doi.org/10.1016/j.conbuildmat.2012.11.003
[25]  马倩敏, 黄丽萍, 牛治亮, 等. 碱激发剂浓度及模数对碱矿渣胶凝材料抗压性能及水化产物的影响研究[J]. 硅酸盐通报, 2018, 37(6): 2002-2007.
[26]  Palacios, M. and Puertas, F. (2004) Effect of Superplasticizer and Shrinkage-Reducing Admixtures on Alkali-Activated Slag Pastes and Mortars. Cement and Concrete Research, 35, 1358-1367.
[27]  
https://doi.org/10.1016/j.cemconres.2004.10.014
[28]  刘荣, 马玉玮, 李源, 等. 外加剂对碱激发粉煤灰/矿渣胶凝材料早期性能的影响[J]. 科学技术与工程, 2017, 17(16): 107-113.
[29]  樊晓丹, 李玉祥, 王少剑, 等. 碱激发超细矿渣粉制备灌浆料的缓凝问题研究[J]. 混凝土, 2014(10): 81-85.
[30]  Cong, X.Y., et al. (2019) Low Field NMR Relaxation as a Probe to Study the Effect of Activators and Retarders on the Alkali-Activated GGBFS Setting Process. Cement and Concrete Composites, 104, Article ID: 103399.
[31]  
https://doi.org/10.1016/j.cemconcomp.2019.103399
[32]  Gao, X., Liu, C., Shui, Z., et al. (2021) Effects of Expansive Additives on the Shrinkage Behavior of Coal Gangue Based Alkali Activated Materials. Crystals, 11, Article No. 816.
https://doi.org/10.3390/cryst11070816
[33]  Shen, W., Wang, Y., Zhang, T., et al. (2011) Magnesia Modification of Alkali-Activated Slag Fly Ash Cement. Journal of Wuhan University of Technology—Materials Science Edition, 26, 121-125.
[34]  
https://doi.org/10.1007/s11595-011-0182-8
[35]  麻鹏飞, 李爽, 程宝军, 等. 碱激发矿渣水泥基材料收缩性能研究[J]. 无机盐工业, 2020, 52(10): 145-150.
[36]  杨南如. 非传统胶凝材料化学[M]. 武汉: 武汉理工大学出版社, 2018.
[37]  庄培镇, 马玉玮, 罗甜恬, 等. 碱激发矿渣/粉煤灰净浆/砂浆力学性能研究[J]. 硅酸盐通报, 2022, 41(10): 3578-3589.
[38]  Koplík, J., Kalina, L., Másilko, J., et al. (2016) The Characterization of Fixation of Ba, Pb, and Cu in Alkali-Activated Fly Ash/Blast Furnace Slag Matrix. Materials, 9, Article No. 533.
https://doi.org/10.3390/ma9070533
[39]  王东平, 陈佩圆, 王亮, 等. 粉煤灰掺量对碱激发矿渣砂浆减缩特性研究[J]. 硅酸盐通报, 2018, 37(2): 701-705.
[40]  Meysam, N., Nader, G. and Mohammadreza, S. (2018) Alkali-Activated Natural Pozzolan/Slag Mortars: A Parametric Study. Construction and Building Materials, 164, 625-643.
https://doi.org/10.1016/j.conbuildmat.2017.12.222
[41]  袁正平, 耿新洋, 王富林. 碱激发冶炼铅渣-偏高岭土复合胶凝材料的制备及水化机理[J]. 硅酸盐通报, 2022, 41(5): 1724-1733.
[42]  顾海荣, 张鹏, 王盛年, 等. 偏高岭土基地聚物改良土最优配比及固化效果分析[J]. 科学技术与工程, 2022, 22(17): 7089-7098.
[43]  李相国, 段超群, 马保国, 等. 聚合物对偏高岭土地聚物的改性研究[J]. 混凝土, 2013(12): 103-106.
[44]  李召峰, 陈经棚, 杨磊, 等. 石粉对赤泥基注浆材料的影响机制[J]. 工程科学学报, 2021, 43(6): 768-777.
[45]  安强, 潘慧敏, 赵庆新, 等. 碱激发赤泥-粉煤灰-电石渣复合材料性能研究[J]. 建筑材料学报, 2022: 1-10.
[46]  宋丽娜, 高嵩, 李秋义, 等. 高贝利特水泥-赤泥地聚合物材料制备研究[J]. 混凝土, 2020(7): 124-126.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133