|
碳纤维板蠕变性能研究综述
|
Abstract:
碳纤维增强聚合物片材(CFRP)作为一种新型材料,在结构工程领域作为加固材料,通过对构件施加预应力大幅度提升结构的抗弯承载能力,常用于桥梁的加固工程中,可显著延长结构的耐久性,大幅度减少结构的维护费用,碳纤维板材料在长期受力过程中会产生蠕变和应力松弛,蠕变性能会削弱结构加固效果,进而影响结构正常工作,甚至会导致工程结构破坏从而造成巨大经济损失,因此,为保证碳纤维拉索结构的安全和耐久性,针对碳纤维板材料的蠕变性能研究十分有必要。本文主要归纳国内外对于蠕变性能的综合研究以及碳纤维拉索系统的蠕变影响因素,并探究应该如何对锚固系统锚固下的碳纤维拉索进行整体性能试验研究。
Carbon fiber reinforced polymer sheet (CFRP), as a new material, is widely used in structural engineering. As a reinforcement material, the flexural bearing capacity of the structure is greatly improved by applying prestress to the components. It is often used in bridge reinforcement engineering, which can significantly extend the durability of the structure and greatly reduce the maintenance cost of the structure. In the long-term stress process, the carbon fiber plate material will produce creep and stress relaxation, and the creep performance will weaken the reinforcement effect of the structure, thus affecting the normal operation of the structure. It may even lead to structural damage and huge economic losses. Therefore, in order to ensure the safety and durability of the carbon fiber cable structure, it is necessary to study the creep properties of carbon fiber sheet materials. This paper sums up the factors influencing the creep of carbon fiber cable system, and explores how to conduct the overall performance test research of carbon fiber cable anchored by the anchoring system.
[1] | 姚国文, 吴海军, 李世亚. 桥梁检测与加固技术[M]. 北京: 人民交通出版社, 2014: 181-255. |
[2] | Kamal, A.S.M. and Boulfiza, M. (2010) Durability of GFRP Rebars in Simulated Concrete Solutions under Accelerated Aging Conditions. Journal of Composites for Construction, 15, 473-481.
https://doi.org/10.1061/(ASCE)CC.1943-5614.0000168 |
[3] | 陈波. 多层预应力CFRP板加固混凝土梁协同受力性能研究[D]: [硕士学位论文]. 重庆: 重庆交通大学, 2016. |
[4] | Wu, Z.S., Fahmy, M.F.M. and Wu, G. (2011) Damage-Controllable Structure Systems Using FRP Composites. Journal of Earthquake and Tsunami, 5, 241-258. https://doi.org/10.1142/S1793431111000966 |
[5] | 任慧韬. 纤维增强复合材料加固混凝土结构基本力学性能和长期受力性能研究[D]: [博士学位论文]. 大连: 大连理工大学, 2003. |
[6] | Triantafillou, T.C., Deskovic, N. and Deuring, M. (1992) Strengthening of Concrete Structures with Prestressed Fiber Reinforced Plastic Sheets. Structural Journal, 89, 235-244. https://doi.org/10.14359/2940 |
[7] | 刘鹏飞, 赵启林, 王景全. 树脂基复合材料松弛性能研究进展[J]. 玻璃钢/复合材料, 2013(3): 109-117, 12. |
[8] | 曾磊. 预应力CFRP板加固混凝土梁试验与理论研究[D]: [硕士学位论文]. 上海: 上海同济大学, 2005. |
[9] | 尚守平, 吴建任, 张毛心, 等. 预应力碳纤维板加固系统的预应力损失试验[J]. 公路交通科技, 2012, 29(1): 71-74. |
[10] | 张宝静. 预应力碳纤维板加固梁桥间接刚度及长期徐变性能研究[D]: [博士学位论文]. 长沙: 湖南大学, 2016. |
[11] | Wang, X., Wu, Z., Wu, G., et al. (2013) Enhancement of Basalt FRP by Hybridization for Long-Span Cable-Stayed Bridge. Composites Part B: Engineering, 44, 184-192. https://doi.org/10.1016/j.compositesb.2012.06.001 |
[12] | Ping, Z.G., Jie, Z.-Y., Zhang, Z.-H., et al. (2019) The Influence of Load Transfer Medium Creep on the Load-Carrying Capacity of the Bond-Type Anchors of CFRP Tendons. Construction and Building Materials, 206, 236-247.
https://doi.org/10.1016/j.conbuildmat.2019.02.017 |
[13] | 王胜年. 我国海港工程混凝土耐久性技术发展及现状[J]. 水运工程, 2013(z1): 1-7. |
[14] | 曹健, 王元丰, 安小平, 巩健. 轴心受压粉煤灰混凝土构件徐变系数研究[J]. 中国公路学报, 2015, 28(3): 73-81. |
[15] | GB 50010-2010. 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010. |
[16] | 吴韶斌. 长期持续荷载下的混凝土徐变破坏研究[D]: [硕士学位论文]. 重庆: 重庆交通大学, 2013. |
[17] | 张电杰. 考虑徐变效应的FRP约束混凝土塑性模型研究[D]: [博士学位论文]. 北京: 北京交通大学, 2013. |
[18] | Emara, M., Torres, L., Baena, M., et al. (2017) Effect of Sustained Loading and Environmental Conditions on the Creep Behavior of an Epoxy Adhesive for Concrete Structures Strengthened with CFRP Laminates. Composites Part B, 129, 88-96. https://doi.org/10.1016/j.compositesb.2017.07.026 |
[19] | Puigvert, F., Crocombe, A.D. and Gil, L. (2014) Fatigue and Creep Analyses of Adhesively Bonded Anchorages for CFRP Tendons. International Journal of Adhesion and Adhesives, 54, 143-154.
https://doi.org/10.1016/j.ijadhadh.2014.05.013 |
[20] | Nakada, M. and Miyano, Y. (2016) Statistical Creep Failure Time of Unidirectional CFRP. Experimental Mechanics, 56, 653-658. https://doi.org/10.1007/s11340-015-0049-6 |
[21] | Lam, L. and Teng, J.G. (2004) Ultimate Condition of Fiber Reinforced Polymer-Confined Concrete. Journal of Composites for Construction, 8, 539-548. |
[22] | Nakada, M., Okuya, T. and Miyano, Y. (2014) Statistical Prediction of Tensile Creep Failure Time for Unidirectional CFRP. Advanced Composite Materials, 23, 451-460. https://doi.org/10.1080/09243046.2014.915099 |
[23] | El-Sayed, A.K., Al-Zaid, R.A., Al-Negheimish, A.I., et al. (2014) Long-Term Behavior of Wide Shallow RC Beams Strengthened with Externally Bonded CFRP Plates. Construction and Building Materials, 51, 473-483.
https://doi.org/10.1016/j.conbuildmat.2013.10.055 |
[24] | Chandra, V. (2001) Individual and Interactive Influence of Temperature, Stress, Physical Aging and Moisture on Creep, Creep Rupture and Fracture of Epoxy Matrix and Its Composite. The University of Manitoba, Winnipeg. |
[25] | Bouziadi, F., et al. (2020) Finite Element Modeling of Creep Behavior of FRP-Externally Strengthened Reinforced Concrete Beams. Engineering Structures, 204, Article ID: 109908. https://doi.org/10.1016/j.engstruct.2019.109908 |
[26] | Wu, Z., Wang, X., Iwashita, K., et al. (2010) Tensile Fatigue Behaviour of FRP and Hybrid FRP Sheets. Composites Part B: Engineering, 41, 396-402. https://doi.org/10.1016/j.compositesb.2010.02.001 |
[27] | Ali, N.M., Wang, X. and Wu, Z. (2013) Integrated Performance of FRP Tendons with Fiber Hybridization. Journal of Composites for Construction, 18, A4013007. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000427 |
[28] | Jeong, Y.S., Lee, J.H. and Kim, W.S. (2016) Combined Effects of Sustained Load and Temperature on Pull-Off Strength and Creep Response between CFRP Sheet and Concrete Using Digital Image Processing. Korea Concrete Institute, 28, 535-544. https://doi.org/10.4334/JKCI.2016.28.5.535 |