|
热/机械稳定的锂金属负极的制备方法
|
Abstract:
以金属锂化学为基础的可充电电池由于其具有超高容量和能量密度,有希望成为下一代的能源储存装置。然而,锂负极热耐受性较差、结构强度较低等原因,严重阻碍了高安全性和高能量密度的锂金属电池在当前和未来的广泛应用。在这篇综述中,我们从热稳定性和对外力的耐受性等方面严谨地讨论了稳固型金属锂负极制造的研究现状,总结了当前制造稳固型金属锂负极的方法,强调了稳固型锂负极制备过程对锂的能量密度产生的副作用。最后,我们提出了热稳定和机械稳定锂负极设计制造的未来趋势和挑战,及其在下一代电池中的广泛应用前景。
Rechargeable batteries based on metallic lithium chemistry are promising for next-generation energy storage due to their ultrahigh capacity and energy densities. However, the poor thermal tolerance, and low structure strength of lithium anode seriously hinder the widespread adoption of high-security and energy-dense lithium metal batteries in today and the future. In this review, we critically discuss the current status of research on robust lithium metal anode processing from the perspectives of thermal stability, and the tolerance for external forces; summarize recent strategies to fabricate a robust lithium metal anode; emphasize the side effect on the energy density of lithium during the robust anode preparation process. Finally, we proposed the future trends and challenges of the design and fabrication of thermal/mechanical-stable lithium anode and prospects toward their broad application in next-generation batteries.
[1] | Trahey, L., Brushett, F.R., Balsara, N.P., Ceder, G., Cheng, L., Chiang, Y.M., Hahn, N.T., Ingram, B.J., Minteer, S.D., Moore, J.S., Mueller, K.T., Nazar, L.F., Persson, K.A., Siegel, D.J., Xu, K., Zavadil, K.R., Srinivasan, V. and Crabtree, G.W. (2020) Energystorage Emerging: A Perspective from the Joint Center for Energy Storage Research. Proceedings of the National Academy of Sciences of the United States of America, 117, 12550-12557.
https://doi.org/10.1073/pnas.1821672117 |
[2] | Chen, Y., Yue, M., Liu, C., Zhang, H., Yu, Y., Li, X. and Zhang, H. (2019) Long Cycle Life Lithium Metal Batteries Enabled with Upright Lithium Anode. Advanced Functional Materials, 29, Article ID: 1806752.
https://doi.org/10.1002/adfm.201806752 |
[3] | Long, R., Wang, G.L., Hu, Z.L., Sun, P.F. and Zhang, L. (2021) Gradually Activated Lithium Uptake in Sodium Citrate toward High-Capacity Organic Anode for Lithium-Ion Batteries. Rare Metals, 40, 1366-1372.
https://doi.org/10.1007/s12598-020-01502-5 |
[4] | Placke, T., Kloepsch, R., Dühnen, S. and Winter, M. (2017) Lithium Ion, Lithium Metal, and Alternative Rechargeable Battery Technologies: The Odyssey for High Energy Density. Journal of Solid State Electrochemistry, 21, 1939-1964.
https://doi.org/10.1007/s10008-017-3610-7 |
[5] | Li, M., Lu, J., Chen, Z. and Amine, K. (2018) 30 Years of Lithium-Ion Batteries. Advanced Materials, 30, Article ID: 1800561. https://doi.org/10.1002/adma.201800561 |
[6] | Qian, J., Adams, B.D., Zheng, J., Xu, W., Henderson, W.A., Wang, J., Bowden, M.E., Xu, S., Hu, J. and Zhang, J.G. (2016) Anode-Free Rechargeable Lithium Metal Batteries. Advanced Functional Materials, 26, 7094-7102.
https://doi.org/10.1002/adfm.201602353 |
[7] | Yang, T., Li, L., Wu, F. and Chen, R. (2020) A Soft Lithiophilic Graphene Aerogel for Stable Lithium Metal Anode. Advanced Functional Materials, 30, Article ID: 2002013. https://doi.org/10.1002/adfm.202002013 |
[8] | Yan, C.L. (2020) Realizing High Performance of Solid-State Lithium Metal Batteries by Flexible Ceramic/Polymer Hybrid Solid Electrolyte. Rare Metals, 39, 458-459. https://doi.org/10.1007/s12598-020-01417-1 |
[9] | Vaalma, C., Buchholz, D., Weil, M. and Passerini, S. (2018) A Cost and Resource Analysis of Sodium-Ion Batteries. Nature Reviews Materials, 3, Article No. 18013. https://www.energy.gov/eere/vehicles/batteries |
[10] | US Department of Energy, Batteries, Energy. Gov. (2020). https://www.energy.gov/eere/vehicles/batteries |
[11] | Evarts, E.C. (2015) Lithium Batteries: To the Limits of Lithium. Nature, 526, S93-S95.
https://doi.org/10.1038/526S93a |
[12] | Liu, Z., Yu, Q., Zhao, Y., He, R., Xu, M., Feng, S., Li, S., Zhou, L. and Mai, L. (2019) Silicon Oxides: A Promising Family of Anode Materials for Lithium-Ion Batteries. Chemical Society Reviews, 48, 285-309.
https://doi.org/10.1039/C8CS00441B |
[13] | Li, J., Yang, J.Y., Wang, J.T. and Lu, S.G. (2019) A Scalable Synthesis of Silicon Nanoparticles as High-Performance Anode Material for Lithium-Ion Batteries. Rare Metals, 38, 199-205. https://doi.org/10.1007/s12598-017-0936-3 |
[14] | Cheng, X.B., Zhang, R., Zhao, C.Z. and Zhang, Q. (2017) Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews, 117, 10403-10473. https://doi.org/10.1021/acs.chemrev.7b00115 |
[15] | Albertus, P., Babinec, S., Litzelman, S. and Newman, A. (2018) Status and Challenges in Enabling the Lithium Metal Electrode for High-Energy and Low-Cost Rechargeable Batteries. Nature Energy, 3, 16-21.
https://doi.org/10.1038/s41560-017-0047-2 |
[16] | Li, Q., Zhu, H., Tang, Y., Zhu, P., Ma, H., Ge, C. and Yan, F. (2019) Chemically Grafting Nanoscale UIO-66 onto Polypyrrole Nanotubes for Long-Life Lithium-Sulfur Batteries. Chemical Communications, 55, 12108-12111.
https://doi.org/10.1039/C9CC06362E |
[17] | Duffner, F., Kronemeyer, N., Tübke, J., Leker, J., Winter, M. and Schmuch, R. (2021) Post-Lithium-Ion Battery Cell Production and Its Compatibility with Lithium-Ion Cell Production Infrastructure. Nature Energy, 6, 123-134.
https://doi.org/10.1038/s41560-020-00748-8 |
[18] | Lin, D., Liu, Y. and Cui, Y. (2017) Reviving the Lithium Metal Anode for High-Energy Batteries. Nature Nanotechnology, 12, 194-206. https://doi.org/10.1038/nnano.2017.16 |
[19] | Han, B., Xu, D., Chi, S.S., He, D., Zhang, Z., Du, L., Gu, M., Wang, C., Meng, H., Xu, K., Zheng, Z. and Deng, Y. (2020) 500 Wh kg?1 Class Li Metal Battery Enabled by a Self-Organized Core-Shell Composite Anode. Advanced Materials, 32, Article ID: 2004793. https://doi.org/10.1002/adma.202004793 |
[20] | Liu, J., Qian, T., Wang, M., Zhou, J., Xu, N. and Yan, C. (2018) Use of Tween Polymer to Enhance the Compatibility of the Li/Electrolyte Interface for the High-Performance and High-Safety Quasi-Solid-State Lithium-Sulfur Battery. Nano Letters, 18, 4598-4605. https://doi.org/10.1021/acs.nanolett.8b01882 |
[21] | Shen, X., Qian, T., Chen, P., Liu, J., Wang, M. and Yan, C. (2018) Bioinspired Polysulfiphobic Artificial Interphase Layer on Lithium Metal Anodes for Lithium Sulfur Batteries. ACS Applied Materials & Interfaces, 10, 30058-30064.
https://doi.org/10.1021/acsami.8b12093 |
[22] | Liu, J., Cao, Y., Zhou, J., Wang, M., Chen, H., Yang, T., Sun, Y., Qian, T. and Yan, C. (2020) Artificial Lithium Isopropyl-Sulfide Macromolecules as an Ion-Selective Interface for Long-Life Lithium-Sulfur Batteries. ACS Applied Materials & Interfaces, 12, 54537-54544. https://doi.org/10.1021/acsami.0c13835 |
[23] | Yan, K., Lu, Z., Lee, H.W., Xiong, F., Hsu, P.C., Li, Y., Zhao, J., Chu, S. and Cui, Y. (2016) Selective Deposition and Stable Encapsulation of Lithium through Heterogeneous Seeded Growth. Nature Energy, 1, Article No. 16010.
https://doi.org/10.1038/nenergy.2016.10 |
[24] | Ye, H., Zheng, Z.J., Yao, H.R., Liu, S.C., Zuo, T.T., Wu, X.W., Yin, Y.X., Li, N.W., Gu, J.J., Cao, F.F. and Guo, Y.G. (2019) Guiding Uniform Li Plating/Stripping through Lithium-Aluminum Alloying Medium for Long-Life Li Metal Batteries. Angewandte Chemie International Edition, 58, 1094-1099. https://doi.org/10.1002/anie.201811955 |
[25] | Xiang, J., Yuan, L., Shen, Y., Cheng, Z., Yuan, K., Guo, Z., Zhang, Y., Chen, X. and Huang, Y. (2018) Improved Rechargeability of Lithium Metal Anode via Controlling Lithium-Ion Flux. Advanced Energy Materials, 8, Article ID: 1802352. https://doi.org/10.1002/aenm.201802352 |
[26] | Lin, D., Zhao, J., Sun, J., Yao, H., Liu, Y., Yan, K. and Cui, Y. (2017) Three-Dimensional Stable Lithium Metal Anode with Nanoscale Lithium Islands Embedded in Ionically Conductive Solid Matrix. Proceedings of the National Academy of Sciences of the United States of America, 114, 4613-4618. https://doi.org/10.1073/pnas.1619489114 |
[27] | Xu, Y., Li, T., Wang, L. and Kang, Y. (2019) Interlayered Dendrite-Free Lithium Plating for High-Performance Lithium-Metal Batteries. Advanced Materials, 31, Article ID: 1901662. https://doi.org/10.1002/adma.201901662 |
[28] | Yun, Q., He, Y.B., Lv, W., Zhao, Y., Li, B., Kang, F. and Yang, Q.H. (2016) Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes. Advanced Materials, 28, 6932-6939. https://doi.org/10.1002/adma.201601409 |
[29] | Feng, X., Ren, D., He, X. and Ouyang, M. (2020) Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule, 4, 743-770. https://doi.org/10.1016/j.joule.2020.02.010 |
[30] | Feng, X., Ouyang, M., Liu, X., Lu, L., Xia, Y. and He, X. (2018) Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review. Energy Storage Materials, 10, 246-267.
https://doi.org/10.1016/j.ensm.2017.05.013 |
[31] | Yan, P., Zhu, Y., Pan, X. and Ji, H. (2021) A Novel Flame-Retardant Electrolyte Additive for Safer Lithium-Ion Batteries. International Journal of Energy Research, 45, 2776-2784. https://doi.org/10.1002/er.5972 |
[32] | Zhang, C., Zhang, L. and Yu, G. (2020) Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage. Accounts of Chemical Research, 53, 1648-1659.
https://doi.org/10.1021/acs.accounts.0c00360 |
[33] | Zhou, J., Qian, T., Liu, J., Wang, M., Zhang, L. and Yan, C. (2019) High-Safety All-Solid-State Lithium-Metal Battery with High-Ionic-Conductivity Thermoresponsive Solid Polymer Electrolyte. Nano Letters, 19, 3066-3073.
https://doi.org/10.1021/acs.nanolett.9b00450 |
[34] | Gong, Y.X. and Wang, J.J. (2020) Solid-State Batteries: From Fundamental Interface Characterization to Realize Sustainable Promise. Rare Metals, 39, 743-744. https://doi.org/10.1007/s12598-020-01429-x |
[35] | Alexander, G.V., Indu, M.S., Kamakshy, S. and Murugan, R. (2020) Development of Stable and Conductive Interface between Garnet Structured Solid Electrolyte and Lithium Metal Anode for High Performance Solid-State Battery. Electrochimica Acta, 332, Article ID: 135511. https://doi.org/10.1016/j.electacta.2019.135511 |
[36] | Gorgas, I., Herke, P. and Schoeck, G. (1981) The Plastic Behaviour of Lithium Single Crystals. Physica Status Solidi, 67, 617-623. https://doi.org/10.1002/pssa.2210670232 |
[37] | Xu, G., Huang, L., Lu, C., Zhou, X. and Cui, G. (2020) Revealing the Multilevel Thermal Safety of Lithium Batteries. Energy Storage Materials, 31, 72-86. https://doi.org/10.1016/j.ensm.2020.06.004 |
[38] | Shen, Y., Han, S., Xu, Q., Wang, Y., Xu, Z., Zhao, B. and Zhang, R. (2016) Optimizing Degradation of Reactive Yellow 176 by Dielectric Barrier Discharge Plasma Combined with TiO2 Nano-Particles Prepared Using Response Surface Methodology. Journal of the Taiwan Institute of Chemical Engineers, 60, 302-312.
https://doi.org/10.1016/j.jtice.2015.10.018 |
[39] | Wang, Z., Liu, J., Wang, M., Shen, X., Qian, T. and Yan, C. (2020) Toward Safer Solid-State Lithium Metal Batteries: A Review. Nanoscale Advances, 2, 1828-1836. https://doi.org/10.1039/D0NA00174K |
[40] | Schaeffffer, A.M.J., Talmadge, W.B., Temple, S.R. and Deemyad, S. (2012) High Pressure Melting of Lithium. Physical Review Letters, 109, Article ID: 185702. https://doi.org/10.1103/PhysRevLett.109.185702 |
[41] | Chung, H. and Kang, B. (2017) Mechanical and Thermal Failure Induced by Contact between a Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte and Li Metal in an All Solid-State Li Cell. Chemistry of Materials, 29, 8611-8619.
https://doi.org/10.1021/acs.chemmater.7b02301 |
[42] | Wu, Y., Wang, S., Li, H., Chen, L. and Wu, F. (2021) Progress in Thermal Stability of All-Solid-State-Li-Ion-Batteries. InfoMat, 3, 827-853. https://doi.org/10.1002/inf2.12224 |
[43] | Xie, S., Deng, Y., Mei, J., Yang, Z., Lau, W.M. and Liu, H. (2016) Facile Synthesis of CoS2/CNTs Composite and Its Exploitation in Thermal Battery Fabrication. Composites Part B: Engineering, 93, 203-209.
https://doi.org/10.1016/j.compositesb.2016.03.038 |
[44] | Zhang, W.J. (2011) A Review of the Electrochemical Performance of Alloy Anodes for Lithium-Ion Batteries. Journal of Power Sources, 196, 13-24. https://doi.org/10.1016/j.jpowsour.2010.07.020 |
[45] | Heligman, B.T. and Manthiram, A. (2021) Elemental Foil Anodes for Lithium-Ion Batteries. ACS Energy Letters, 6, 2666-2672. https://doi.org/10.1021/acsenergylett.1c01145 |
[46] | Huggins, R.A. (1999) Lithium Alloy Negative Electrodes. Journal of Power Sources, 81-82, 13-19.
https://doi.org/10.1016/S0378-7753(99)00124-X |
[47] | Besenhard, J.O., Yang, J. and Winter, M. (1997) Will Advanced Lithium-Alloy Anodes Have a Chance in Lithium-Ion Batteries. Journal of Power Sources, 68, 87-90. https://doi.org/10.1016/S0378-7753(96)02547-5 |
[48] | Huang, H.F., Gui, Y.N., Sun, F., Liu, Z.J., Ning, H.L., Wu, C. and Chen, L.B. (2021) In Situ Formed Three-Dimensional (3D) Lithium-Boron (Li-B) Alloy as a Potential Anode for Next-Generation Lithium Batteries. Rare Metals, 40, 3494-3500. https://doi.org/10.1007/s12598-021-01708-1 |
[49] | Zhang, T., Hong, M., Yang, J., Xu, Z., Wang, J., Guo, Y. and Liang, C. (2018) A High Performance Lithium-Ion-Sulfur Battery with a Free-Standing Carbon Matrix Supported Li-Rich Alloy Anode. Chemical Science, 9, 8829-8835.
https://doi.org/10.1039/C8SC02897D |
[50] | Qiu, H., Tang, T., Asif, M., Li, W., Zhang, T. and Hou, Y. (2019) Stable Lithium Metal Anode Enabled by Lithium Metal Partial Alloying. Nano Energy, 65, Article ID: 103989. https://doi.org/10.1016/j.nanoen.2019.103989 |
[51] | Choudhury, S., Tu, Z., Stalin, S., Vu, D., Fawole, K., Gunceler, D., Sundararaman, R. and Archer, L.A. (2017) Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport. Angewandte Chemie International Edition, 56, 13070-13077. https://doi.org/10.1002/anie.201707754 |
[52] | Weppner, W. and Huggins, R.A. (1977) Electrochemical Investigation of the Chemical Diffusion, Partial Ionic Conductivities, and Other Kinetic Parameters in Li3Sb and Li3Bi. Journal of Solid State Chemistry, 22, 297-308.
https://doi.org/10.1016/0022-4596(77)90006-8 |
[53] | Weppner, W. and Huggins, R.A. (1978) Thermodynamic Properties of the Intermetallic Systems Lithium-Antimony and Lithium-Bismuth. Journal of the Electrochemical Society, 125, 7-14. https://doi.org/10.1149/1.2131401 |
[54] | Weppner, W. and Huggins, R.A. (1977) Determination of the Kinetic Parameters of Mixed-Conducting Electrodes and Application to the System Li3Sb. Journal of the Electrochemical Society, 124, 1569-1578.
https://doi.org/10.1149/1.2133112 |
[55] | Wen, C.J. and Huggins, R.A. (1981) Electrochemical Investigation of the Lithium-Gallium System. Journal of the Electrochemical Society, 128, 1636-1641. https://doi.org/10.1149/1.2127701 |
[56] | Zhou, J., Qian, T., Wang, Z., Liu, J., Sun, Y., Peng, M., Zhu, Y., Li, S. and Yan, C. (2021) Healable Lithium Alloy Anode with Ultrahigh Capacity. Nano Letters, 21, 5021-5027. https://doi.org/10.1021/acs.nanolett.1c00608 |
[57] | Jin, S., Ye, Y., Niu, Y., Xu, Y., Jin, H., Wang, J., Sun, Z., Cao, A., Wu, X., Luo, Y., Ji, H. and Wan, L.J. (2020) Solid-Solution-Based Metal Alloy Phase for Highly Reversible Lithium Metal Anode. Journal of the American Chemical Society, 142, 8818-8826. https://doi.org/10.1021/jacs.0c01811 |
[58] | Xu, T., Gao, P., Li, P., Xia, K., Han, N., Deng, J., Li, Y. and Lu, J. (2020) Fast-Charging and Ultrahigh-Capacity Lithium Metal Anode Enabled by Surface Alloying. Advanced Energy Materials, 10, Article ID: 1902343.
https://doi.org/10.1002/aenm.201902343 |
[59] | Gao, Y., Yi, R., Li, Y.C., Song, J., Chen, S., Huang, Q., Mallouk, T.E. and Wang, D. (2017) General Method of Manipulating Formation, Composition, and Morphology of Solid-Electrolyte Interphases for Stable Li-Alloy Anodes. Journal of the American Chemical Society, 139, 17359-17367. https://doi.org/10.1021/jacs.7b07584 |
[60] | Gu, X., Dong, J. and Lai, C. (2021) Li-Containing Alloys Beneficial for Stabilizing Lithium Anode: A Review. English Reports, 3, e12339. https://doi.org/10.1002/eng2.12339 |
[61] | Zhang, R., Chen, X., Shen, X., Zhang, X.Q., Chen, X.R., Cheng, X.B., Yan, C., Zhao, C.Z. and Zhang, Q. (2018) Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries. Joule, 2, 764-777.
https://doi.org/10.1016/j.joule.2018.02.001 |
[62] | Huang, G., Han, J., Zhang, F., Wang, Z., Kashani, H., Watanabe, K. and Chen, M. (2019) Lithiophilic 3D Nanoporous Nitrogen-Doped Graphene for Dendrite-Free and Ultrahigh-Rate Lithium-Metal Anodes. Advanced Materials, 31, Article ID: 1805334. https://doi.org/10.1002/adma.201805334 |
[63] | Liang, Z., Lin, D., Zhao, J., Lu, Z., Liu, Y., Liu, C., Lu, Y., Wang, H., Yan, K., Tao, X. and Cui, Y. (2016) Composite Lithium Metal Anode by Melt Infusion of Lithium into a 3D Conducting Scaffold with Lithiophilic Coating. Proceedings of the National Academy of Sciences of the United States of America, 113, 2862-2867.
https://doi.org/10.1073/pnas.1518188113 |
[64] | Fu, L., Wan, M., Zhang, B., Yuan, Y., Jin, Y., Wang, W., Wang, X., Li, Y., Wang, L., Jiang, J., Lu, J. and Sun, Y. (2020) A Lithium Metal Anode Surviving Battery Cycling above 200?C. Advanced Materials, 32, Article ID: 2000952.
https://doi.org/10.1002/adma.202000952 |
[65] | Hou, T.Z., Xu, W.T., Chen, X., Peng, H.J., Huang, J.Q. and Zhang, Q. (2017) Lithium Bond Chemistry in Lithium-Sulfur Batteries. Angewandte Chemie International Edition, 56, 8178-8182.
https://doi.org/10.1002/anie.201704324 |
[66] | Zheng, S., Ma, J., Wu, Z.S., Zhou, F., He, Y.B., Kang, F., Cheng, H.M. and Bao, X. (2018) All-Solid-State Flexible Planar Lithium Ion Micro-Capacitors. Energy & Environmental Science, 11, 2001-2009.
https://doi.org/10.1039/C8EE00855H |
[67] | Kutbee, A.T., Bahabry, R.R., Alamoudi, K.O., Ghoneim, M.T., Cordero, M.D., Almuslem, A.S., Gumus, A., Diallo, E.M., Nassar, J.M., Hussain, A.M., Khashab, N.M. and Hussain, M.M. (2017) Flexible and Biocompatible High-Performance Solid-State Micro-Battery for Implantable Orthodontic System. npj Flexible Electronics, 1, Article No. 7. https://doi.org/10.1038/s41528-017-0008-7 |
[68] | Dai, H., Huang, M., Qian, J., Liu, J., Meng, C., Li, Y., Ming, G., Zhang, T., Wang, S., Shi, Y., Yao, Y., Ge, S., Zhang, Y. and Ling, Y. (2019) Excellent Antitumor and Antimetastatic Activities Based on Novel Coumarin/Pyrazole Oxime Hybrids. European Journal of Medicinal Chemistry, 166, 470-479. https://doi.org/10.1016/j.ejmech.2019.01.070 |
[69] | Shen, L., Shi, P., Hao, X., Zhao, Q., Ma, J., He, Y.B. and Kang, F. (2020) Progress on Lithium Dendrite Suppression Strategies from the Interior to Exterior by Hierarchical Structure Designs. Small, 16, Article ID: 2000699.
https://doi.org/10.1002/smll.202000699 |
[70] | Wang, S., Xiong, P., Zhang, J. and Wang, G. (2020) Recent Progress on Flexible Lithium Metal Batteries: Composite Lithium Metal Anodes and Solid-State Electrolytes. Energy Storage Materials, 29, 310-331.
https://doi.org/10.1016/j.ensm.2020.04.032 |
[71] | Peng, H.J., Huang, J.Q. and Zhang, Q. (2017) A Review of Flexible Lithium-Sulfur and Analogous Alkali Metal-Chalcogen Rechargeable Batteries. Chemical Society Reviews, 46, 5237-5288. https://doi.org/10.1039/C7CS00139H |
[72] | Lu, L.L., Ge, J., Yang, J.N., Chen, S.M., Yao, H.B., Zhou, F. and Yu, S.H. (2016) Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. Nano Letters, 16, 4431-4437.
https://doi.org/10.1021/acs.nanolett.6b01581 |
[73] | Liu, Y., Lin, D., Liang, Z., Zhao, J., Yan, K. and Cui, Y. (2016) Lithium-Coated Polymeric Matrix as a Minimum Volume-Change and Dendrite-Free Lithium Metal Anode. Nature Communications, 7, Article No. 10992.
https://doi.org/10.1038/ncomms10992 |
[74] | Li, Q., Zhu, S. and Lu, Y. (2017) 3D Porous Cu Current Collector/Li-Metal Composite Anode for Stable Lithium-Metal Batteries. Advanced Functional Materials, 27, Article ID: 1606422.
https://doi.org/10.1002/adfm.201606422 |
[75] | Wang, X., Pan, Z., Yang, J., Lyu, Z., Zhong, Y., Zhou, G., Qiu, Y., Zhang, Y., Wang, J. and Li, W. (2019) Stretchable Fiber-Shaped Lithium Metal Anode. Energy Storage Materials, 22, 179-184.
https://doi.org/10.1016/j.ensm.2019.01.013 |
[76] | Chen, H., Yang, Y., Boyle, D.T., Jeong, Y.K., Xu, R., de Vasconcelos, L.S., Huang, Z., Wang, H., Wang, H., Huang, W., Li, H., Wang, J., Gu, H., Matsumoto, R., Motohashi, K., Nakayama, Y., Zhao, K. and Cui, Y. (2021) Free-Standing Ultrathin Lithium Metal-Graphene Oxide Host Foils with Controllable Thickness for Lithium Batteries. Nature Energy, 6, 790-798. https://doi.org/10.1038/s41560-021-00833-6 |
[77] | Wang, C.Y., Zheng, Z.J., Feng, Y.Q., Ye, H., Cao, F.F. and Guo, Z.P. (2020) Topological Design of Ultrastrong MXene Paper Hosted Li Enables Ultrathin and Fully Flexible Lithium Metal Batteries. Nano Energy, 74, Article ID: 104817. https://doi.org/10.1016/j.nanoen.2020.104817 |
[78] | Liu, K., Kong, B., Liu, W., Sun, Y., Song, M.S., Chen, J., Liu, Y., Lin, D., Pei, A. and Cui, Y. (2018) Stretchable Lithium Metal Anode with Improved Mechanical and Electrochemical Cycling Stability. Joule, 2, 1857-1865.
https://doi.org/10.1016/j.joule.2018.06.003 |
[79] | Li, S., Wang, H., Cuthbert, J., Liu, T., Whitacre, J.F. and Matyjaszewski, K. (2019) A Semiliquid Lithium Metal Anode. Joule, 3, 1637-1646. https://doi.org/10.1016/j.joule.2019.05.022 |
[80] | Wu, W., Duan, J., Wen, J., Chen, Y., Liu, X., Huang, L., Wang, Z., Deng, S., Huang, Y. and Luo, W. (2020) A Writable Lithium Metal Ink. Science China Chemistry, 63, 1483-1489. https://doi.org/10.1007/s11426-020-9810-1 |
[81] | Gao, J., Chen, C., Dong, Q., Dai, J., Yao, Y., Li, T., Rundlett, A., Wang, R., Wang, C. and Hu, L. (2021) Stamping Flexible Li Alloy Anodes. Advanced Materials, 33, Article ID: 2005305. https://doi.org/10.1002/adma.202005305 |
[82] | Liao, K.N., et al. (2018) Developing a “Water-Defendable” and “Dendrite-Free” Lithium-Metal Anode Using a Simple and Promising GeCl4 Pretreatment Method. Advanced Materials, 30, Article ID: 1705711.
https://doi.org/10.1002/adma.201705711 |