|
PE燃气管烧熔漏气案例失效原因及热影响区结构性能退化研究
|
Abstract:
本文采用宏观/微观形貌、傅里叶红外光谱、差示扫描量热法(DSC)和热失重法等对城市管网中烧熔失效的PE燃气管的表观性能和结构老化性能与未服役管材进行了比较分析,阐明了烧熔PE燃气管失效漏气的本质原因。烧熔管材在服役过程中已经发生了结构劣化,性能下降;但烧熔区域由于高温氧化发生小分子链的再结晶,结晶度、熔融温度和耐热氧老化性能相对提高;未烧熔区域受到烧熔区的影响,性能明显下降;提出应重点关注结构严重劣化的PE燃气管烧熔热影响区的范围。
This paper presents a comparative analysis of the apparent and structural aging properties of polyethylene gas pipe which was hot-melting and failure in urban networks and unused pipes, using macro/microscopic morphology, Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC) and thermal weight loss, to clarify the essential causes of failure and gas leakage of PE gas pipes. The ablative pipe has structural deterioration and performance degradation taken place during the service. However, the crystallinity, melting temperature and thermal oxygen ageing properties of the ablative polymer area were relatively improved due to the recrystallisation of short chains polymer as a result of high temperature oxidation behavior. The performance of the vicinity of ablative area was significantly reduced affected by thermal ablation diffusion. It was proposed that the focus should also be put on the extent of the ablation heat-affected zone where the pipe was severe structural deterioration.
[1] | 张存森. PE燃气鞍型三通管件改进措施[J]. 城市公用事业, 2012, 26(5): 41-44. |
[2] | 熊志敏, 魏若奇. 纽约2014燃气管爆炸事故——管材管件失效调查分析介绍[C]//第17届全国塑料管道生产和应用技术推广交流会论文集. 贵阳: 住房和城乡建设部科技发展促进中心, 2015: 168-186. |
[3] | 詹志炜, 魏瑞. 一起天然气管道爆燃事故的分析[J]. 特种设备安全技术, 2011(6): 44-45. |
[4] | 金平强. 白蚁对PE燃气管道的破坏及防治措施[J]. 煤气与热力, 2013(33): 4-5. |
[5] | 宗杰文. 埋地聚乙烯燃气管道白蚁侵蚀危害及预防措施[C]//中国燃气运营与安全研讨会. 常州: 《煤气与热力》杂志社有限公司, 2017: 996-1000. |
[6] | 龙军. 埋地燃气聚乙烯管道白蚁蚁侵危害与防治[J]. 煤气与热力, 2012, 32(7): 43-45. |
[7] | 陈雪晶, 赵青根, 唐前. 红火蚁对PE燃气管道的损害及防治方法探讨[J]. 城市燃气, 2017(10): 10-13. |
[8] | Chudnovsky, A., Zhou, Z., Zhang, H., et al. (2012) Lifetime Assessment of Engineering Thermoplastics. International Journal of Engineering Science, 59, 108-139. https://doi.org/10.1016/j.ijengsci.2012.03.016 |
[9] | Krishnaswamy, R.K. (2005) Analysis of Ductile and Brittle Failures from Creep Rupture Testing of High-Density Polyethylene (HDPE) Pipes. Polymer, 46, 11664-11672. https://doi.org/10.1016/j.polymer.2005.09.084 |
[10] | 杨波, 何嘉平, 翟伟, 等. 基于循环载荷法评价聚乙烯管材性能的可靠性研究[J]. 中国塑料, 2020, 34(3): 54-61. |
[11] | Lang, R.W., Stern, A. and Doerner, G. (2010) Ap-plicability and Limitations of Current Lifetime Prediction Models for Thermoplastics Pipes under Internal Pressure. Macromolecular Materials & Engineering, 247, 131-145.
https://doi.org/10.1002/apmc.1997.052470109 |
[12] | Zhou, W., Chen, D., Shulkin, Y., et al. (2001) Ductile Failure and Delayed Necking in Polyethylene. In: Moalli, J., Ed., Plastics Failure Analysis & Prevention, Elsevier, Amsterdam, 25-30.
https://doi.org/10.1016/B978-188420792-1.50005-6 |
[13] | Yi, Z., et al. (2018) Quantification of Strain-Induced Damage in Semi-Crystalline Polymers: A Review. Journal of Materials Science, 54, 62-82. |
[14] | Gurson, A.L. (1977) Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media. Journal of Engineering Materials and Technology, 99, 2-15.
https://doi.org/10.1115/1.3443401 |
[15] | Detrez, F., Cantournet, S. and Seguela, R. (2011) Plasticity/Damage Coupling in Semi-Crystalline Polymers Prior to Yielding: Micromechanisms and Damage Law Identification. Pol-ymer, 52, 1998-2008.
https://doi.org/10.1016/j.polymer.2011.03.012 |
[16] | Gu, G., Yong, X., Lin, C.H., et al. (2013) Experimental Study on Characterizing Damage Behavior of Thermoplastics. Materials and Design, 44, 199-207. https://doi.org/10.1016/j.matdes.2012.07.062 |
[17] | Balieu, R., Lauro, F., Bennani, B., et al. (2015) Damage at High Strain Rates in Semi-Crystalline Polymers. International Journal of Impact Engineering, 76, 1-8. https://doi.org/10.1016/j.ijimpeng.2014.08.013 |
[18] | Yi, Z. and Jar, P. (2015) Quantitative Assessment of Deformation-Induced Damage in Polyethylene Pressure Pipe. Polymer Testing, 47, 42-50. https://doi.org/10.1016/j.polymertesting.2015.08.005 |
[19] | 齐昌超, 杜炘洁, 王勇. 城镇燃气聚乙烯(PE)管检测技术研究[C]//2018年全国天然气学术年会论文集. 成都: 中国石油学会天然气专业委员会, 2018. |
[20] | Zhao, Y., Choi, B.H. and Chudnovsky, A. (2013) Characterization of the Fatigue Crack Behavior of Pipe Grade Polyeth-ylene Using Circular Notched Specimens. International Journal of Fatigue, 51, 26-35.
https://doi.org/10.1016/j.ijfatigue.2013.01.016 |
[21] | 姜锐涛, 吴志峰, 王志伟. 钢塑转换连接结构的研究[J]. 中国塑料, 2021, 35(5): 86-91. |
[22] | 孟晓丽, 王德国, 郭岩宝, 等. 基于模糊Petri网的燃气PE管道风险评价[J]. 安全与环境工程, 2016, 23(4): 126-131. |
[23] | 田丰, 金小燕. 核电站电缆安全使用寿命评定方法[J]. 中国安全科学学报, 2009, 19(12): 92-95. |
[24] | Kinsler, M. and Hmurcik, L.V. (2002) A Damage Mechanism: Lightning-Initiated Fault-Current Arcs to Communication Cables Buried beneath Overhead Electric Power Lines. IEEE Transactions on Industry Applications, 35, 163-168.
https://doi.org/10.1109/28.740860 |
[25] | 胡京, 蓝磊, 文习山. 工频电流对金属管道烧蚀试验研究[J]. 高压电器, 2010, 46(2): 55-58. |
[26] | 刘宏亮, 刘若溪, 赵西元, 等. 径向电流集中诱发的高压交联聚乙烯电缆缓冲层烧蚀研究[J]. 绝缘材料, 2021, 54(8): 94-101. |
[27] | 王晓杰, 万芯瑗, 郑凌娟, 等. 福建近海地区配网架空绝缘导线烧蚀原因分析[J]. 绝缘材料, 2021, 54(3): 78-83. |
[28] | 羡瑜, 王翠翠, 王戈, 等. 造纸剩余物竹屑含量对竹质纤维-高密度聚乙烯复合材料力学及热性能的影响[J]. 材料导报, 2015, 29(5): 47-52. |
[29] | 辛闻, 张富青, 袁军, 等. 回收高密度聚乙烯的热降解动力学研究[J]. 山东化工, 2016, 45(7): 37-41. |
[30] | 刘玉飞, 陈果, 陈磊, 等. 硅烷自然交联聚乙烯热降解研究[J]. 化学推进剂与高分子材料, 2015, 13(5): 84-87. |
[31] | 袁聪慧, 王仕峰, 张勇, 等. 回收高密度聚乙烯结构与性能的研究[J]. 中国塑料, 2011, 25(10): 81-85. |