全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

High-Precision Structural Map of Southeast Cameroon Using Phase Filters on Potential Gravimetric Data

DOI: 10.4236/ojer.2022.114006, PP. 89-107

Keywords: Gravimetry, Potential Field Data, Edge Detection, Structural Mapping, Southeast Cameroon

Full-Text   Cite this paper   Add to My Lib

Abstract:

The south-east of Cameroon encompasses a wide variety of geological structures among which we can cite the Congo Craton (CC), the Sanaga Fault (SF), the Yaoundé Domain, the Panafrican belt, the Protozoic series and the Dja complex. The presence of all these structures justifies the great tectonic activity to which this area was subject from the rupture of Pangea to the creation of the different plates that exist today. In this work, we will bring out a high-resolution structural map of the study area by applying the qualitative analysis of the phase filters on 200,900 points of gravimetric data obtained from the combination of the XGM2016 and ETOPO1 models. Then, with these same data, we will bring out another structural map with the maxima method called Multi-Scale Horizontal Derivative of Vertical Derivative (MSHDVD) which will be compared to the first in order to show the limits of the MSHDVD method. To do this, we will first use the extension method to highlight the map of residual anomalies, then a combination of derivative, gradient and phase filters to highlight the geological structures responsible for fracturing in this area. Phase filters have the advantage that they make it possible to highlight all the geological edges responsible for the fracturing without taking into ac

References

[1]  Telford, W.M., Geldart, L. and Sheriff, R.E. (1990) Applied Geophysics. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781139167932
[2]  Blakely, R.J. (1996) Potential Theory in Gravity and Magnetic Applications. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511549816
[3]  Skeels, D.C. (1967) What Is Residual Gravity? Geophysics, 32, 872-876.
https://doi.org/10.1190/1.1439896
[4]  Vajda, P., Vanícek, P. and Meurers, B. (2004) On the Removal of the Effect of Topography on Gravity Disturbance in Gravity Data Inversion or Interpretation. Contributions to Geophysics and Geodesy, 34, 339-369.
[5]  Sjöberg, L.E., Bagherbandi, M. and Tenzer, R. (2015) On Gravity Inversion by No-Topography and Rigorous Isostatic Gravity Anomalies. Pure and Applied Geophysics, 172, 2669-2680.
https://doi.org/10.1007/s00024-015-1032-y
[6]  Tenzer, R., Chen, W., Tsoulis, D., Bagherbandi, M., Sjoberg, L.E., Novak, P. and Jin, S. (2015) Analysis of the Refined CRUST1.0 Crustal Model and Its Gravity Field. Surveys in Geophysics, 36, 139-165.
https://doi.org/10.1007/s10712-014-9299-6
[7]  Bai, Y., Dong, D., Kirby, J.F., Williams, S.E. and Wang, Z. (2018) The Effect of Dynamic Topography and Gravity on Lithospheric Effective Elastic Thickness Estimation: A Case Study. Geophysical Journal International, 214, 623-634.
https://doi.org/10.1093/gji/ggy162
[8]  Tenzer, R. and Chen, W. (2019) Mantle and Sub-Lithosphere Mantle Gravity Maps from the LITHO1.0 Global Lithospheric Model. Earth-Science Reviews, 194, 38-56.
https://doi.org/10.1016/j.earscirev.2019.05.001
[9]  Hinze, W.J., Von Frese, R.R. and Saad, A.H. (2013) Gravity and Magnetic Exploration: Principles, Practices, and Applications. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511843129
[10]  Griffin, W.R. (1949) Residual Gravity in Theory and Practice. Geophysics, 14, 39-56.
https://doi.org/10.1190/1.1437506
[11]  Henderson, R.G. and Zietz, I. (1949) The Computation of Second Vertical Derivatives of Geomagnetic Fields. Geophysics, 14, 508-516.
https://doi.org/10.1190/1.1437558
[12]  Roy, A. (1958) Residual and Second Derivative of Gravity and Magnetic Maps. Geophysics, 23, 860-862.
https://doi.org/10.1190/1.1438535
[13]  Agocs, W.B. (1951) Least Squares Residual Anomaly Determination. Geophysics, 16, 686-696.
https://doi.org/10.1190/1.1437720
[14]  Zurflueh, E.G. (1967) A Fourier Method for the Regional-Residual Problem of Potential Fields. Geophysics, 32, 1015-1035.
https://doi.org/10.1190/1.1439905
[15]  Agarwal, R.G. and Kanasewich, E.R. (1971) Automatic Trend Analysis and Interpretation of Potential Field Data. Geophysics, 36, 339-348.
https://doi.org/10.1190/1.1440173
[16]  Syberg, F.J.R. (1972) A Fourier Method for the Regional-Residual Problem of Potential Fields. Geophysical Prospecting, 20, 47-75.
https://doi.org/10.1111/j.1365-2478.1972.tb00619.x
[17]  Spector, A. and Grant, F.S. (1970) Statistical Models for Interpreting Aeromagnetic Data. Geophysics, 35, 293-302.
https://doi.org/10.1190/1.1440092
[18]  Jacobsen, B.H. (1987) A Case for Upward Continuation as a Standard Separation Filter for Potential-Field Maps. Geophysics, 52, 390-398.
https://doi.org/10.1190/1.1442378
[19]  Pawlowski, R.S. and Hansen, R.O. (1990) Gravity Anomaly Separation by Wiener Filtering. Geophysics, 55, 539-548.
https://doi.org/10.1190/1.1442865
[20]  Pawlowski, R.S. (1995) Preferential Continuation for Potential-Field Anomaly Enhancement. Geophysics, 60, 390-398.
https://doi.org/10.1190/1.1443775
[21]  Tadjou, J.M., Nouayou, R., Kamguia, J., Kande, H.L. and Manguelle-Dicoum, E. (2009) Gravity Analysis of the Boundary between the Congo Graton and the Pan-African Belt of Cameroon. Austrian Journal of Earth Sciences, 102, 71-79.
[22]  Poudjom Djomani, Y.H., Nnange, J.M., Diament, M., Ebinger, C.J. and Fairhead, J.D. (1995) Effective Elastic Thickness and Crustal Thickness Variations in West Central Africa Inferred from Gravity Data. Journal of Geophysical Research, 100, 22047-22070.
https://doi.org/10.1029/95JB01149
[23]  Tokam, A.P.K., Tabod, C.T., Nyblade, A.A., Julia, J., Wiens, D.A. and Pasyanos, M.E. (2010) Structure of the Crust beneath Cameroon, West Africa, from the Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions. Geophysical Journal International, 183, 1061-1076.
https://doi.org/10.1111/j.1365-246X.2010.04776.x
[24]  Shandini, Y. and Tadjou, J.M. (2012) Interpreting Gravity Anomalies in South Cameroon, Central Africa. Earth Sciences Research Journal, 16, 5-9.
[25]  Guidarelli, M. and Aoudia, A. (2016) Ambient Noise Tomography of the Cameroon Volcanic Line and Northern Congo Craton: New Constraints on the Structure of the Lithosphere. Geophysical Journal International, 204, 1756-1765.
https://doi.org/10.1093/gji/ggv561
[26]  Ngalamo, J.F.G., Sobh, M., Bisso, D., Abdelsalam, M.G., Atekwana, E. and Ekodeck, G.E. (2018) Lithospheric Structure beneath the Central Africa Orogenic Belt in Cameroon from the Analysis of Satellite Gravity and Passive Seismic Data. Tectonophysics, 745, 326-337.
https://doi.org/10.1016/j.tecto.2018.08.015
[27]  Ghomsi, F.E.K., Severin, N., Mandal, A., Nyam, F.E.A., Tenzer, R., Kamga, A.P.T. and Nouayou, R. (2020) Cameroon’s Crustal Configuration from Global Gravity and Topographic Models and Seismic Data. Journal of African Earth Sciences, 161, Article ID: 103657.
https://doi.org/10.1016/j.jafrearsci.2019.103657
[28]  Nyaban, C.E, Ndougsa-Mbarga, T., Bikoro-Bi-Alou, M., Manekeng, S.A.T. and and Assembe, S.P. (2021) Multi-Scale Analysis and Modelling of Aeromagnetic Data over the Bétaré-Oya Area in Eastern Cameroon, for Structural Evidence Investigations. Solid Earth, 12, 785-800.
https://doi.org/10.5194/se-12-785-2021
[29]  Blakely, R.J. and Simpson R.W. (1986) Approximating Edges of Source Bodies from Magnetic or Gravity Anomalies. Geophysics, 51, 1494-1498.
https://doi.org/10.1190/1.1442197
[30]  Cordell, L. (1979) Gravimetric Expression of Graben Faulting in Santa Fe Country and the Espanola Basin, New Mexico. Geological Society Guidebook. In: Ingersoll, R.V., Woodward, L.A. and James, H.L., Eds., 30th Field Conference, New Mexico, 59-64.
https://doi.org/10.56577/FFC-30.59
[31]  Cordell, L. and Grauch, V.J.S. (1985) 16. Mapping Basement Magnetization Zones from Aeromagnetic Data in the San Juan Basin, New Mexico. In: Hinze, W.J., Ed., The Utility of Regional Gravity and Magnetic Anomaly Maps, Society of Exploration Geophysicists, Houston, 181-197.
https://doi.org/10.1190/1.0931830346.ch16
[32]  Nabighian, M.N. (1972) The Analytic Signal of Two-Dimensional Magnetic Bodies with Polygonal Cross-Section: Its Properties and Use for Automated Anomaly Interpretation. Geophysics, 37, 507-517.
https://doi.org/10.1190/1.1440276
[33]  Nabighian, M.N. (1984) Toward a Three-Dimensional Automatic Interpretation of Potential Field Data via Generalized Hilbert Transforms: Fundamental Relations. Geophysics, 49, 780-786.
https://doi.org/10.1190/1.1441706
[34]  Roest, W.R., Verhoef, J. and Pilkington, M. (1992) Magnetic Interpretation Using the 3-D Analytic Signal. Geophysics, 57, 116-125.
https://doi.org/10.1190/1.1443174
[35]  Miller, H.G. and Singh, V. (1994) Potential Field Tilt—A New Concept for Location of Potential Field Sources. Journal of Applied Geophysics, 32, 213-217.
https://doi.org/10.1016/0926-9851(94)90022-1
[36]  Pham, L.T., Eldosouky, A.M., Oksum, E. and Saada, S.A. (2020) A New High Resolution Filter for Source Edge Detection of Potential Field Data. Geocarto International, 37, 3051-3068.
https://doi.org/10.1080/10106049.2020.1849414
[37]  Fitton, J.G. (1987) The Cameroon Line, West Africa: A Comparison between Oceanic and Continental Alkaline Volcanism. Alkali Igneous Rocks. Geological Society, London, Special Publications No. 30, 273-291.
https://doi.org/10.1144/GSL.SP.1987.030.01.13
[38]  Poudjom Djomani, Y.H., Diament, M. and Wilson, M. (1997) Lithospheric Structure across the Adamawa Plateau (Cameroon) from Gravity Studies. Tectonophysics, 273, 317-327.
https://doi.org/10.1016/S0040-1951(96)00280-6
[39]  Toteu, S.F., Penaye, J. and Poudjom Djomani, Y. (2004) Geodynamic Evolution of the Pan-African Belt in Central Africa with Special Reference to Cameroon. Journal of Earth Science, 41, 73-85.
https://doi.org/10.1139/e03-079
[40]  Ngako, V. (1999) Les déformations continentales panafricaines en Afrique Centrale. Résultat d’un poinçonnement de type himalayéen. Thèse Doctorat d’état, Université de Yaoundé I, Yaoundé, 241 p.
[41]  Tchameni, R., Mezger, K., Nsifa, N.E. and Pouclet, A. (2000) Neoarchaean Crustal Evolution in the Congo Craton: Evidence from K Rich Granitoids of the Ntem Complex, Southern Cameroon. Journal of African Earth Sciences, 30, 133-147.
https://doi.org/10.1016/S0899-5362(00)00012-9
[42]  Nkoumbou, C., Barbey, P., Yonta-Ngouné, C., Paquette, J.L. and Villiéras, F. (2014) Precollisional Geodynamic Context of the Southern Margin of the Pan-African Fold Belt in Cameroon. Journal of African Earth Sciences, 99, 245-260.
https://doi.org/10.1016/j.jafrearsci.2013.10.002
[43]  Toteu, S.F., Van Schmus, W.R. and Penaye, J. (2006) The Precambrian of Central Africa: Summary and Perspectives. Journal of African Earth Sciences, 44, 7-10.
https://doi.org/10.1016/j.jafrearsci.2005.12.002
[44]  Van-Schmus, W.R., Oliveira, E.P., da Silva Filho, A.F., Toteu, S.F., Penaye, J. and and Guimaraes, I.P. (2008) Proterozoic Links between the Borborema Province, NE-Brazil and the Central African Fold Belt. Geological Society, London, Special Publications No. 294, 69-99.
https://doi.org/10.1144/SP294.5
[45]  Loose, D. and Schenk, V. (2018) 2.09 Ga Old Eclogites in the Eburnian-Transamazonian Orogen of Southern Cameroon: Significance for Paleoproterozoic Plate Tectonics. Precambrian Research, 304, 1-11.
https://doi.org/10.1016/j.precamres.2017.10.018
[46]  Shang, C.K, Liégeois, J.P., Satir, M., Frisch, W. and Nsifa, E.N. (2010) Late Archaean High-K Granite Geochronology of the Northern Metacratonic Margin of the Archaean Congo Craton, Southern Cameroon: Evidence for Pb-Loss Due to Non-Mrtamorphic Causes. Gondwana Research, 18, 237-355.
https://doi.org/10.1016/j.gr.2010.02.008
[47]  Baranov, A.A. and Bobrov, A.M. (2018) Crustal Structure and Properties of Archean Cratons of Gondwanaland: Similarity and Difference. Russian Geology and Geophysics, 59, 512-524.
https://doi.org/10.1016/j.rgg.2018.04.005
[48]  Maurizot, P., Abessolo, A., Feybesse, J., Johan, J.L. and Lecomte, P. (1986) Etude et prospection minière du Sud-Ouest Cameroun. Synthèse des travaux de 1978 à 1985, Thèse de Doctorat, Université d’Orléans, Orléans, 274 p.
[49]  Vicat, J.P., Léger, J.M., Nsifa, E., Piguet, P., Nzenti, J.P., Tchameni, R. and Pouclet, A. (1996) Distinction, au sein du craton congolais du sud-ouest du Cameroun, de deux épisodes doléritiques initiant les cycles orogéniques éburnéen (Paléoprotérozoïque) et panafricain (Néoprotérozoïque) Comptes Rendus de l’Académie des Sciences. Série 2. Sciences de la terre et des planètes, 323, 575-582.
[50]  Feybesse, J.L., Johan, V., Maurizot, P. and Abessolo, A. (1987) Evolution tectonométamorphique libérienne et éburnéenne de la partie NW du Craton du Zaïrois (SW-Cameroun). In: Matheis, G. and Balkema, S.H., Eds., Current Research in African Earth Sciences, A. A. Balkema, Rotterdam, 9-13.
[51]  Tchameni, R. (1997) Géochimie et géochronologie des formations de l’Archéen et du Paléoprotérozoïque du Sud Cameroun (groupe du Ntem, Craton du Congo). Thède de Doctorat, Uiversité d’Orléans, Orléans, 395 p.
[52]  Shang, C.K., Siebel, W., Satir, M., Chen, F. and Mvondo-Ondoua, J. (2004) Pb-Pb and U-Pb Systematics of TTG Rocks in the Congo Craton: Constraints on Crust Formation, Magmatism and Pan-African Lead Loss. Bulletin of Geosciences, 79, 205-219.
[53]  Tchameni, R., et al. (2010) Mineralogical Constraint for Metamorphic Conditions in a Shear Zone Affecting the Archaean Ngoulemakong Tonolite, Congo Craton (Southern Cameroon) and Retebtivity of U-Pb SHRIMP Zircon Dates. Journal of African Earth Sciences, 58, 67-80.
https://doi.org/10.1016/j.jafrearsci.2010.01.009
[54]  Mvondo, H., Owona, S., Ondoa, J.M. and Essono, J. (2007) Tectonic Evolution of the Yaounde Segment of the Neoproterozoic Central African Orogenic Belt in Southern Cameroon. Canadian Journal of Earth Sciences, 44, 433-444.
https://doi.org/10.1139/e06-107
[55]  Toteu, S.F., Penaye, J., Deschamps, Y., Maldan, F., Nyama-Atibagoua, B., Bouyo-Houketchang, M., Sep-Nlomgan, J.P. and Mbola-Ndzana, S.P. (2008) Géologie et ressources minérales du Cameroun. 33rd International Geological Congress, Oslo, 6-14 August 2008, 1 p.
[56]  Amante, C. and Eakins, B.W. (2009) ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA, Technical Memorandum NESDIS, NGDC 24, 19 p.
[57]  Fecher, T., Pail, R. and Gruber, T. (2017) GOCO05c: A New Combined Gravity Field Model Based on Full Normal Aquetions and Regionally Varying Weighting. Surveys in Geophysics, 38, 571-590.
https://doi.org/10.1007/s10712-016-9406-y
[58]  Zeng, H. (1989) Estimation of the Degree of Polynomial Fitted to Gravity Anomalies and Its Applications. Geophysical Prospecting, 37, 959-973.
https://doi.org/10.1111/j.1365-2478.1989.tb02242.x
[59]  Abate, J.M.E., Njandjock, N.P., Ngatchou, H.E., Oyoa, V., Tabod, C.T. and Manguelle-Dicoum, E. (2016) Structure of the Crust beneath the South Western Cameroon, from Gravity Data Analysis. International Journal of Geosciences, 7, 991-1008.
https://doi.org/10.4236/ijg.2016.78075
[60]  Fedi, M. and Florio, G. (2001) Detection of Potential Fields Source Boundaries by Enhanced Horizontal Derivative Method. Geophysical Prospecting, 49, 40-58.
https://doi.org/10.1046/j.1365-2478.2001.00235.x
[61]  Gunn, P.J. (1975) Linear Transformation of Gravity and Magnetic Fields. Geophysical Prospecting, 23, 300-312.
https://doi.org/10.1111/j.1365-2478.1975.tb01530.x
[62]  Grauch, V.J.S. and Cordell, L. (1987) Limitations of Determining Density or Magnetic Boundaries from the Horizontal Gradient of Gravity or Pseudogravity Data. Geophysics, 52, 118-121.
https://doi.org/10.1190/1.1442236
[63]  Phillips, J.D. (2000) Locating Magnetic Contacts: A Comparison of the Horizontal Gradient, Analytic Signal, and Local Wavenumber Methods. In: The SEG Technical Program Expanded Abstracts 2000, Society of Exploration Geophysicists, Calagry, 24-84.
https://doi.org/10.1190/1.1816078
[64]  Verduzco, B., Fairhead, J.D., Green, C.M. and MacKenzie, C. (2004) New Insights into Magnetic Derivatives for Structural Mapping. The Leading Edge, 23, 116-119.
https://doi.org/10.1190/1.1651454
[65]  Thurston, J.B. and Smith, R.S. (1997) Automatic Conversion on Magnetic Data to Depth, Dip and Susceptibility Contrast Using the SPITM Method. Geophysics, 62, 807-813.
https://doi.org/10.1190/1.1444190
[66]  Caron, V., Ekomane, E., Mahieux, G., Moussango, P. and Ndjeng, E. (2010) The Mintom Formation (New): Sedimentology and Geochemistry of a Neoproterozoic, Paralic Succession in South-East Cameroon. Journal of African Earth Sciences, 57, 367-385.
https://doi.org/10.1016/j.jafrearsci.2009.11.006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133