|
生物炭负载纳米零价铁活化过硫酸盐降解双酚A性能及机理研究
|
Abstract:
双酚A (BPA)作为一种类雌激素物质,对人类的健康和生态系统的稳定造成了严重威胁。过硫酸盐(PMS)高级氧化法在BPA去除方面表现出了极大的潜力。本论文以秸秆为生物质,采用碳热还原法原位制备了生物炭/Fe0复合材料,并以其作为催化剂活化PMS降解BPA。结果表明,秸秆经碱水解后表面产生了大量的羧基和羟基基团,有利于Fe2+在其表面的负载。复合材料催化PMS降解BPA的性能随着Fe0负载量的增加而增强。在复合材料投加量为0.15 g?L?1、PMS投加量为0.20 g?L?1,溶液pH为8.0的条件下,BPA的降解率达到了98.5%。自由基淬灭实验表明,硫酸根自由基与羟基自由基均参与BPA的降解过程,但前者对降解反应起主导作用。本研究有望为催化PMS降解BPA的高性能催化剂的设计和制备提供了新思路。
Bisphenol A (BPA), as an estrogen-like substance, has posed a se-rious threat to human health and ecosystem stability. Persulfate (PMS) based Advanced Oxidation Processes (AOPs) have shown great potential in the removal of BPA. In this paper, biochar/Fe0 composites were prepared in situ by using straw as biomass by carbon thermal reduction method, and were used as a catalyst to activate PMS to degrade BPA. The results showed that a large number of carboxyl and hydroxyl functional groups were produced on the surface of straw after alkali hy-drolysis pretreatment, which was beneficial to the loading of Fe2+ on the surface of straw. The catalytic performance of PMS for BPA degradation was enhanced with the increase of Fe0 loading. Addi-tionally, BPA removal efficiency increased to 98.5%, when the dosage of composite material was 0.15 g?L?1 and PMS was 0.20 g?L?1, and the solution pH was 8.0, respectively. The results of free radical quenching showed that both sulfate radical and hydroxyl radical were involved in the degradation of BPA, but the former played a dominant role in the degradation. This study is expected to provide a new idea for the design and preparation of high-performance catalysts for the degrada-tion of BPA by PMS.
[1] | 陈小芳, 李东, 固旭. 双酚类化合物的合成及应用进展研究[J]. 广州化工, 2016, 44(5): 26-28. |
[2] | Zhang, L., Mi, J.L., Hu, G.N., Zhang, C. and Qi, H.S. (2020) Facile Fabeication of a High-Efficient and Biocompatibility Biocatalyst for Bisphenol A Removel. International Journal of Biological Macromolecules, 150, 948-954.
https://doi.org/10.1016/j.ijbiomac.2019.11.007 |
[3] | 刘学敏. 微塑料与典型环境内分泌干扰物的界面行为和作用机制研究[D]: [博士学位论文]. 上海: 华东师范大学, 2020. |
[4] | 汪佳. 铁基污泥生物炭活化过硫酸盐处理难降解有机废水的研究[D]: [博士学位论文]. 武汉: 华中科技大学, 2017. |
[5] | 黄开友, 申英杰, 王晓岩, 等. 生物炭负载纳米零价铁制备及修复六价铬污染土壤技术研究进展[J]. 环境工程, 2020, 38(11): 203-210+195. |
[6] | 张慧敏. 碳热还原制备生物炭负载纳米零价铁应用于废水铀的去除性能研究[D]: [硕士学位论文]. 广州: 广州大学, 2020. |
[7] | 郝慧茹, 张倩, 李孟, 等. 改性生物炭负载纳米零价铁活化过硫酸盐降解活性蓝19的机理及老化研究[J]. 环境科学学报, 2021, 41(2): 477-485. |
[8] | Khataee, A., Kayan, B., Kalderis, D., et al. (2017) Ultra-sound-Assisted Removal of Acid Red 17 Using Nanosized Fe3O4-Loaded Coffee Waste Hydrochar. Ultrasonics Sono-chemistry, 35, 72-80.
https://doi.org/10.1016/j.ultsonch.2016.09.004 |
[9] | 陈晶晶. 生物炭/H2O2体系类芬顿方法降解水中亚甲基兰的效果研究[D]: [硕士学位论文]. 西安: 西北大学, 2019. |
[10] | Hu, P.D., Su, H.R., Chen, Z.Y., et al. (2017) Selec-tive Degradation of Organic Pollutants Using an Efficient Metal-Free Catalyst Derived from Carbonized Polypyrrole via Peroxymonosulfate Activation. Environmental Science & Technology, 51, 11288-11296. https://doi.org/10.1021/acs.est.7b03014 |
[11] | Roman, S., Nabais, J.M.V., Ledesma, B., et al. (2013) Production of Low-Cost Adsorbents with Tunable Surface Chemistry by Conjunction of Hydrothermal Carbonization and Activation Processes. Microporous and Mesoporous Materials, 165, 127-133. https://doi.org/10.1016/j.micromeso.2012.08.006 |
[12] | 杨选民, 王雅君, 邱凌, 等. 温度对生物质三组分热解制备生物炭理化特性的影响[J]. 农业机械学报, 2017, 48(4): 284-290. |
[13] | Fan, H.G., Gu, J., Wang, Y.Z., et al. (2021) Effect of Potassium on the Pyrolysis of Biomass Components: Pyrolysis Behaviors, Product Distribution and Kinetic Characteristics. Waste Management, 121, 255-264.
https://doi.org/10.1016/j.wasman.2020.12.023 |
[14] | Guo, H.J., Song, Y.M., Chen, P., Lou, H. and Zheng, X.M. (2018) Effects of Graphitization of Carbon Nanospheres on Hydrodeoxygenation Activity of Molybdenum Carbide. Ca-talysis Science & Technology, 8, 4199-4208.
https://doi.org/10.1039/C8CY01136B |
[15] | 邓俊敏. 生物炭负载纳米零价铁在还原及氧化体系下对污染物的去除研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2018. |
[16] | Du, J.K., Bao, J.G., Liu, Y., et al. (2016) Efficient Ac-tivation of Peroxymonosulfate by Magnetic Mn-MGO for Degradation of Bisphenol A. Journal of Hazardous Materials, 320, 150-159.
https://doi.org/10.1016/j.jhazmat.2016.08.021 |
[17] | Ghanbari, F. and Moradi, M. (2017) Application of Peroxymo-nosulfate and Its Activation Methods for Degradation of Environmental Organic Pollutants: Review. Chemical Engi-neering Journal, 310, 41-62.
https://doi.org/10.1016/j.cej.2016.10.064 |
[18] | Ahmadi, M. and Ghanbari, F. (2018) Combination of UVC-LEDs and Ultrasound for Peroxymonosulfate Activation to Degrade Synthetic Dye: Influence of Promotional and Inhibitory Agents and Application for Real Wastewater. Environmental Science and Pollution Research, 25, 6003-6014. https://doi.org/10.1007/s11356-017-0936-8 |
[19] | Eslami, A., Hashemi, M. and Ghanbari, F. (2018) Degradation of 4-Chlorophenol Using Catalyzed Peroxymonosulfate with Nano-MnO2/UV Irradiation: Toxicity Assessment and Evalu-ation for Industrial Wastewater Treatment. Journal of Cleaner Production, 195, 1389-1397. https://doi.org/10.1016/j.jclepro.2018.05.137 |
[20] | Yu, J.F., Feng, H.P., Tang, L., et al. (2020) Metal-Free Carbon Materials for Persulfate-Based Advanced Oxidation Process: Microstructure, Property and Tailoring. Progress in Mate-rials Science, 111, Article ID: 100654.
https://doi.org/10.1016/j.pmatsci.2020.100654 |
[21] | 王郑, 王佳豪, 田湉, 等. 改性生物炭活化过硫酸盐应用及机理研究进展[J]. 精细化工, 2021, 38(7): 1305-1313. |
[22] | Benner, J. and Ternes, T.A. (2009) Ozonation of Metoprolol: Elucidation of Oxidation Pathways and Major Oxidation Products. Environmental Science & Technology, 43, 5472-5480. https://doi.org/10.1021/es900280e |
[23] | Guan, Y.H., Ma, J., Li, C.X., Fang, J.Y. and Chen, L.W. (2011) Influence of pH on the Formation of Sulfate and Hydroxyl Radicals in the UV/Peroxymonosulfate System. Envi-ronmental Science & Technology, 45, 9308-9314.
https://doi.org/10.1021/es2017363 |