全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

浅析铝/金刚石复合材料热导率研究
Study on Thermal Conductivity of Aluminum/Diamond Composites

DOI: 10.12677/MS.2022.1211124, PP. 1122-1131

Keywords: 铝/金刚石,导热系数,界面传热
Aluminum/Diamond
, Thermal Conductivity, Interfacial Heat Transfer

Full-Text   Cite this paper   Add to My Lib

Abstract:

铝/金刚石复合材料受金刚石粒度、体积分数和界面性能直接影响材料热导率变化,大量学者通过原材料改性处理促进铝/金刚石界面结合,优化制备工艺方法改善材料热导率更接近理论值。本文基于对铝基复合材料制备工艺和微观界面的认识,综述如何改善铝/金刚石界面热导优化复合材料热导率,主要通过原料配方和改性、材料制备工艺等方法优化界面热导,使复合材料尽可能达到理论预测模型,同时分析了铝/金刚石在散热领域的应用前景。
The thermal conductivity of alumi-num/diamond composites is directly affected by the particle size, volume fraction and interface properties of diamond. A large number of scholars have promoted the interface bonding of alumi-num/diamond through the modification of raw materials, and optimized the preparation process to improve the thermal conductivity of materials closer to the theoretical value. Based on the under-standing of the preparation process and micro interface of aluminum matrix composites, this paper reviews how to improve the thermal conductivity of aluminum/diamond interface to optimize the thermal conductivity of composites, mainly through the formulation and modification of raw mate-rials, material preparation process and other methods to optimize the thermal conductivity of the interface, so that the composites can reach the theoretical prediction model as much as possible. At the same time, the application prospect of aluminum/diamond in the field of heat dissipation is an-alyzed.

References

[1]  Hasselman, D.P.H., et al. (1987) Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Re-sistance. Journal of Composite Materials, 21, 508-515.
https://doi.org/10.1177/002199838702100602
[2]  Tavangare, R., et al. (2007) Assessing Predictive Schemes for Thermal Conductivity against Diamond-Reinforced Silver Matrix Composites at Intermediate Phase Contrast. Scripta Materialia, 56, 357-360.
https://doi.org/10.1016/j.scriptamat.2006.11.008
[3]  Molina, J.M., et al. (2008) Thermal Conductivity of Alumi-num Matrix Composites Reinforced with Mixtures of Diamond and SiC Particles. Scripta Materialia, 58, 393-396.
https://doi.org/10.1016/j.scriptamat.2007.10.020
[4]  刘永正. 低成本金刚石/铝复合材料的研究[J]. 材料导报, 2013, 27(4): 8-11.
[5]  Tan, Z.Q., et al. (2013) Fabrication of Diamond Aluminum Composites by Vacuum Hot Press-ing Process Optimization and Thermal Properties. Composites, 47, 173-180.
https://doi.org/10.1016/j.compositesb.2012.11.014
[6]  Tan, Z., et al. (2016) Effect of Particle Size on the Thermal and Mechanical Properties of Aluminum Composites Reinforced with SiC and Diamond. Materials & Design, 90, 845-851.
https://doi.org/10.1016/j.matdes.2015.11.028
[7]  Ruch, P.W., et al. (2006) Selective Interfacial Bonding in Al(Si)-Diamond Composites and Its Effect on Thermal Conductivity. Composites Science & Technology, 66, 2677-2685.
https://doi.org/10.1016/j.compscitech.2006.03.016
[8]  Kleiner, S., et al. (2006) Effect of Diamond Crystallographic Orientation on Dissolution and Carbide Formation in Contact with Liquid Aluminium. Scripta Materi-alia, 55, 291-294.
https://doi.org/10.1016/j.scriptamat.2006.05.003
[9]  喻蒙, 等. 金刚石/铝复合材料的界面结构[J]. 自然科学版, 2014, 53(6): 790-793.
[10]  Guo, C., et al. (2016) Effect of (0-40) wt. % Si Addition to Al on the Thermal Conductivity and Thermal Expansion of Diamond/Al Composites by Pressure Infiltration. Journal of Alloys and Compounds, 664, 777-783.
https://doi.org/10.1016/j.jallcom.2015.12.255
[11]  Zhang, Y., et al. (2014) Effect of Metalloid Silicon Addition on Densification, Microstructure and Thermal Physics Properties of Al/Diamond Composites Consolidated by Spark Plasma Sintering. Materials & Design, 63, 838-847.
https://doi.org/10.1016/j.matdes.2014.06.065
[12]  Wu, J., et al. (2012) Effect of Copper Content on the Thermal Conductivity and Thermal Expansion of Al2Cu/Diamond Composites. Materials & Design, 39, 87-92.
https://doi.org/10.1016/j.matdes.2012.02.029
[13]  郭开金. 高导热金刚石/铝复合材料界面构建及组织性能研究[D]: [硕士学位论文]. 北京: 北方工业大学, 2020.
[14]  Xue, C., et al. (2013) Enhanced Thermal Conductivity in Diamond/Aluminum Composites: Comparison between the Methods of Adding Ti into Almatrix and Coating Ti onto Diamond Surface. Surface & Coatings Technology, 217, 46-50.
https://doi.org/10.1016/j.surfcoat.2012.11.070
[15]  Yang, W.S., et al. (2017) Enhanced Thermal Conductivity in Diamond/Aluminum Composites with Tungsten Coatings on Diamond Particles Prepared by Magnetron Sputtering Method. Journal of Alloys and Compounds, 726, 623-631.
https://doi.org/10.1016/j.jallcom.2017.08.055
[16]  Jiang, L.T., et al. (2015) Interfacial Characteristics of Dia-mond/Aluminum Composites with High Thermal Conductivity Fabricated by Squeeze-Casting Method. Materials Char-acterization, 106, 346-351.
https://doi.org/10.1016/j.matchar.2015.06.023
[17]  张超, 等. 先进高导热铝/金刚石复合材料及其导-散热部件制备技术[J]. 北京国际高技术中心, 2015(2): 69-74.
[18]  Monje, I.E., et al. (2013) Optimizing Thermal Conductivity in Gas-Pressure Infiltrated Aluminum/Diamond Composites by Precise Processing Control. Composites: Part A, 48, 9-14.
https://doi.org/10.1016/j.compositesa.2012.12.010
[19]  Wang, P.P., et al. (2015) Enhanced Thermal Conduc-tivity and Flexural Properties in Squeeze Casted Diamond/Aluminum Composites by Processing Control. Materials and Design, 88, 1347-1352.
https://doi.org/10.1016/j.matdes.2015.09.048
[20]  徐洋, 等. 高导热金刚石/铝复合材料的真空热压制备[J]. 金刚石与磨料磨具工程, 2021, 2(41): 46-52.
[21]  Tan, Z.Q., et al. (2013) Diamond Aluminum Composites Processed by Vacuum Hot Pressing Microstructure Characteristics and Thermal Properties. Diamond & Related Materials, 31, 1-5.
https://doi.org/10.1016/j.diamond.2012.10.008

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133