全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高熵合金强韧化研究进展
Development of Strengthening and Toughening of High-Entropy Alloys

DOI: 10.12677/MS.2022.1211123, PP. 1110-1121

Keywords: 高熵合金,强度,塑性,强韧化
High Entropy Alloy
, Strength, Plasticity, Toughening

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着人类社会的不断发展和对材料需求的日益增长,人们对于在特殊领域服役的材料提出了一些全新的要求。多组元合金设计理念的提出,为合金设计提供了无限的成分空间。高熵合金(HEAs)由多种组元构成,这种体系极大提高了合金的混合熵,并且在得到高浓度固溶体的同时避免了形成具有脆性的金属间化合物,使其具备了传统合金难以拥有的优异综合性能。然而,对于服役于极端恶劣环境下的材料通常要求同时具备高塑性和高强度。因此,近年来国内外研究者通过多种强韧化手段实现了高熵合金强度的提升,同时,避免了塑性的降低。本文从高熵合金的成分优化、相结构设计、强韧化方式创新等方面归纳和分析了国内外关于高熵合金强韧化的最新研究进展。
With the continuous development of human society and the increasing demand for materials, people have put forward some brand new demands for the application of materials in different fields, and the concept of multiple alloy design has been proposed to provide an unlimited composition space for alloy design. High entropy alloys (HEAs) are composed of multiple primary elements. This system not only increases the mixed entropy of the alloy but also enables a high concentration of solid solu-tion to be obtained, avoiding the formation of more brittle intermetallic compounds, and giving it a comprehensive performance that is difficult to have with other conventional alloys. However, mate-rials serving in extreme environments need to have high toughness and high strength at the same time, and the existing alloys cannot meet these nearly demanding requirements, researchers in re-cent years through a variety of toughening means to make the performance of high- entropy alloy be greatly improved. This paper summarizes, analyzes, and reviews the latest research progress at home and abroad in terms of the composition, phase structure, and means of toughening high-entropy alloys.

References

[1]  George, E.P., Raabe, D. and Ritchie, R.O. (2019) High-Entropy Alloys. Nature Reviews Materials, 4, 515-534.
https://doi.org/10.1038/s41578-019-0121-4
[2]  Miracle, D.B. and Senkov, O.N. (2017) A Critical Review of High Entropy Alloys and Related Concepts. Acta Materialia, 122, 448-511.
https://doi.org/10.1016/j.actamat.2016.08.081
[3]  贺毅强, 徐虎林, 任昌旭, 等. 多组元高熵合金制备方法的研究现状[J]. 有色金属工程, 2020, 10(6): 30-33.
[4]  Pigott, V.C. (1999) The Development of Metal Production on the Iranian Plateau: An Archaeometallurgical Perspective. In: Pigott, V.C., Ed., The Archaeometallurgy of the Asian Old World, MASCA Research Papers in Science and Archaeology 16, Philadelphia, 73-106.
[5]  Yang, T., Zhao, Y.L., Tong, Y., et al. (2018) Multicomponent Intermetallic Nanoparticles and Superb Mechanical Behaviors of Complex Al-loys. Science, 362, 933-937.
https://doi.org/10.1126/science.aas8815
[6]  Tang, K., Wu, Y.K., et al. (2021) Achieving Superior Cryogenic Tensile Properties in a Ti-Doped (Fe40Mn40Co10Cr10)96.7C3.3 High-Entropy Alloy by Re-covering Deformation Twinning. Materials Science and Engineering: A, 808, Article ID: 140927.
https://doi.org/10.1016/j.msea.2021.140927
[7]  Han, Z., Ren, W., Yang, J., et al. (2019) The Deformation Be-havior and Strain Rate Sensitivity of Ultra-Fine Grained CoNiFeCrMn High-Entropy Alloys at Temperatures Ranging from 77?K to 573?K. Journal of Alloys and Compounds, 791, 962-970.
https://doi.org/10.1016/j.jallcom.2019.03.373
[8]  Tsuji, N., Ogata, S., Inui, H., et al. (2020) Strategy for Manag-ing both High Strength and Large Ductility in Structural Materials-Sequential Nucleation of Different Deformation Modes Based on a Concept of Plaston. Scripta Materialia, 181, 35-42.
https://doi.org/10.1016/j.scriptamat.2020.02.001
[9]  Wang, Z., Lu, W., Raabe, D., et al. (2019) On the Mechanism of Extraordinary Strain Hardening in an Interstitial High-Entropy Alloy under Cryogenic Conditions. Journal of Alloys and Compounds, 781, 734-743.
https://doi.org/10.1016/j.jallcom.2018.12.061
[10]  Naeem, M., He, H., Harjo, S., et al. (2020) Extremely High Dislocation Density and Deformation Pathway of CrMnFeCoNi High Entropy Alloy at Ultralow Temperature. Scripta Materialia, 188, 21-25.
https://doi.org/10.1016/j.scriptamat.2020.07.004
[11]  Tong, Y., Chen, D., Han, B., et al. (2019) Outstanding Ten-sile Properties of a Precipitation-Strengthened FeCoNiCrTi0.2 High-Entropy Alloy at Room and Cryogenic Temperatures. Acta Materialia, 165, 228-240.
https://doi.org/10.1016/j.actamat.2018.11.049
[12]  Cantor, B., Chang, I., Knight, P., et al. (2004) Microstructural Development in Equiatomic Multicomponent Alloys. Materials Science and Engineering: A, 375-377, 213-218.
https://doi.org/10.1016/j.msea.2003.10.257
[13]  Yeh, J.W., Chen, S.K., Lin, S.J., et al. (2004) Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engi-neering Materials, 6, 299-303.
https://doi.org/10.1002/adem.200300567
[14]  Han, Z.H., Liang, S., Yang, J., et al. (2018) A Superior Combination of Strength-Ductility in CoCrFeNiMn High-Entropy Alloy Induced by Asymmetric Rolling and Subsequent Annealing Treatment. Materials Characterization, 145, 619-626.
https://doi.org/10.1016/j.matchar.2018.09.029
[15]  Chen, Y., Chen, D., An, X., et al. (2021) Unraveling Dual Phase Transformations in a CrCoNi Medium-Entropy Alloy. Acta Ma-terialia, 215, Article ID: 117112.
https://doi.org/10.1016/j.actamat.2021.117112
[16]  李甲, 冯慧, 陈阳, 等. 高熵合金强韧化理论建模与模拟研究进展[J]. 固体力学学报, 2020, 41(2): 93-108.
[17]  Sun, S.J., Tian, Y.Z., Lin, H.R., et al. (2019) Achieving High Ductility in the 1.7 ?GPa Grade CoCrFeMnNi High-Entropy Alloy at 77?K. Materials Science and Engineering: A, 740-741, 336-341.
https://doi.org/10.1016/j.msea.2018.10.094
[18]  焦东, 袁子洲, 张香云. 面心立方结构高熵合金研究进展[J]. 铸造技术, 2019, 40(9): 1008-1011.
[19]  Lu, K. (2014) Making Strong Nanomaterials Ductile with Gradients. Science, 345, 1455-1456.
https://doi.org/10.1126/science.1255940
[20]  Gludovatz, B., Hohenwarter, A., Catoor, D., et al. (2014) A Frac-ture-Resistant High-Entropy Alloy for Cryogenic Applications. Science, 345, 1153-1158.
https://doi.org/10.1126/science.1254581
[21]  Huang, S. (2019) The Chemical Ordering and Elasticity in FeCoNi-Al1?x-Tix High-Entropy Alloys. Scripta Materialia, 168, 5-9.
https://doi.org/10.1016/j.scriptamat.2019.04.008
[22]  Nutor, R.K., Azeemullah, M., Cao, Q.P., et al. (2021) Micro-structure and Properties of a Co-Free Fe50Mn27Ni10Cr13 High Entropy Alloy. Journal of Alloys and Compounds, 851, Article ID: 156842.
https://doi.org/10.2139/ssrn.3542973
[23]  Toda-Caraballo, I. and Rivera-Díaz-Del-Castillo, P. (2015) Modelling Solid Solution Hardening in High Entropy Alloys. Acta Materialia, 85, 14-23.
https://doi.org/10.1016/j.actamat.2014.11.014
[24]  Wei, R., Sun, H., Han, Z.H., et al. (2018) Strengthening of Fe40Mn40Co10Cr10 High Entropy Alloy via Mo/C Alloying. Materials Letters, 219, 85-88.
https://doi.org/10.1016/j.matlet.2018.02.065
[25]  Shang, Y.Y., Wu, Y., He, J.Y., et al. (2019) Solving the Strength-Ductility Tradeoff in the Medium-Entropy NiCoCr Alloy via Interstitial Strengthening of Carbon. Intermetallics, 106, 77-87.
https://doi.org/10.1016/j.intermet.2018.12.009
[26]  Cheng, H., Chen, W., Liu, X., et al. (2018) Effect of Ti and C Additions on the Microstructure and Mechanical Properties of the FeCoCrNiMn High-Entropy Alloy. Materials Science and Engineering: A, 719, 192-198.
https://doi.org/10.1016/j.msea.2018.02.040
[27]  Zhuang, Y., Xue, H., Chen, Z., et al. (2013) Effect of Annealing Treatment on Microstructures and Mechanical Properties of FeCoNiCuAl High Entropy Alloys. Materials Science and Engineering: A, 572, 30-35.
https://doi.org/10.1016/j.msea.2013.01.081
[28]  Sun, S.J., Tian, Y.Z., Lin, H.R., et al. (2018) Transition of Twin-ning Behavior in CoCrFeMnNi High Entropy Alloy with Grain Refinement. Materials Science and Engineering: A, 712, 603-607.
https://doi.org/10.1016/j.msea.2017.12.022
[29]  Sun, S.J., Tian, Y.Z., An, X.H., et al. (2018) Ultrahigh Cryogenic Strength and Exceptional Ductility in Ultrafine-Grained CoCrFeMnNi High-Entropy Alloy with Fully Recrystallized Structure. Materials Today Nano, 4, 46-53.
https://doi.org/10.1016/j.mtnano.2018.12.002
[30]  Li, D., Li, C., Feng, T., et al. (2017) High-Entropy Al0.3CoCrFeNi Alloy Fibers with High Tensile Strength and Ductility at Ambient and Cryogenic Temperatures. Acta Materialia, 123, 285-294.
https://doi.org/10.1016/j.actamat.2016.10.038
[31]  Zhang, J., Jia, T., Qiu, H., et al. (2020) Effect of Cooling Rate upon the Microstructure and Mechanical Properties of In-Situ TiC Reinforced High Entropy Alloy CoCrFeNi. Journal of Materials Science & Technology, 42, 122-129.
https://doi.org/10.1016/j.jmst.2019.12.002
[32]  Wu, H., Huang, S.-R., Zhu, C.-Y., et al. (2020) In Situ TiC/FeCrNiCu High-Entropy Alloy Matrix Composites: Reaction Mechanism, Microstructure and Mechanical Properties. Acta Metallurgica Sinica (English Letters), 33, 1091-1102.
https://doi.org/10.1007/s40195-020-01084-2
[33]  Pan, Q., Zhou, H., Lu, Q., et al. (2017) History-Independent Cyclic Response of Nanotwinned Metals. Nature, 551, 214-217.
https://doi.org/10.1038/nature24266
[34]  王仁智. 金属材料的喷丸强化原理及其强化机理综述[J]. 中国表面工程, 2012, 25(6): 1-9.
[35]  杨晓松, 孙田浩, 邓想涛, 等. 梯度结构钢铁材料的研究进展[J]. 材料热处理学报, 2022, 43(1): 1-9.
[36]  Deng, Y., Tasan, C.C., Pradeep, K.G., et al. (2015) Design of a Twinning-Induced Plasticity High Entropy Alloy. Acta Materialia, 94, 124-133.
https://doi.org/10.1016/j.actamat.2015.04.014
[37]  Ma, E. (2020) Unusual Dislocation Behavior in High-Entropy Alloys. Scripta Materialia, 181, 127-133.
https://doi.org/10.1016/j.scriptamat.2020.02.021
[38]  Guo, L., Wu, W., Ni, S., et al. (2020) Strengthening the FeCoCrNiMo0.15 High Entropy Alloy by a Gradient Structure. Journal of Alloys and Compounds, 841, Article ID: 155688.
https://doi.org/10.1016/j.jallcom.2020.155688
[39]  Fu, W., Huang, Y., Sun, J., et al. (2022) Strengthening CrFeCoNiMn0.75Cu0.25 High Entropy Alloy via Laser Shock Peening. International Journal of Plasticity, 154, Article ID: 103296.
https://doi.org/10.1016/j.ijplas.2022.103296
[40]  He, Z.F., Jia, N., Ma, D., et al. (2019) Joint Contribution of Transformation and Twinning to the High Strength-Ductility Combination of a FeMnCoCr High Entropy Alloy at Cryogenic Temperatures. Materials Science and Engineering: A, 759, 437-447.
https://doi.org/10.1016/j.msea.2019.05.057
[41]  Gwalani, B., Dasari, S., Sharma, A., et al. (2021) High Density of Strong Yet Deformable Intermetallic Nanorods Leads to an Excellent Room Temperature Strength-Ductility Combination in a High Entropy Alloy. Acta Materialia, 219, Article ID: 117234.
https://doi.org/10.1016/j.actamat.2021.117234
[42]  Gigax, J.G., El-Atwani, O., Mcculloch, Q., et al. (2020) Micro- and Mesoscale Mechanical Properties of an Ultra-Fine Grained CrFeMnNi High Entropy Alloy Produced by Large Strain Machining. Scripta Materialia, 178, 508-512.
https://doi.org/10.1016/j.scriptamat.2019.11.042

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133