This paper analyzes the adoption dynamics of improved rainfed maize seeds disseminated in Senegal in 2013 by the West African Agricultural Productivity Program (WAAPP). We group maize producers into five groups (non-adopters, laggards/abandoners, late adopters, followers and pioneers/innovators) and take into account the heterogeneity of unobservable characteristics of the producers. In the pioneers/innovators group, the availability of labour, household size, shocks, and frequency of access to advice positively influence adoption, whereas financial constraints and high numbers of plots reduce the probability of adoption. Producers in the followers’ category tend to be older and more educated than those in the other categories. However, food insecurity and shocks such as diseases hamper adoption. For the group of late adopters, household size and available storage infrastructures explain adoption. However, the number of plots and shocks reduces their probability of adoption. Laggards tend to face shocks and food insecurity. The authors recommend to consider the dynamics of the adoption of technological innovations and heterogeneity of the characteristics of adopters groups in future research. They also recommend farmers to increase their adoption rate of the “Early Thai” and “Suwan 1” seed varieties thanks to their higher yields compared to traditional varieties. Also, a higher adoption rate would positively impact the food security of maize farmers in Eastern Senegal and High Casamance, especially in terms of availability. Other studies measuring the number of years needed for large-scale adoption of improved seed varieties should be conducted.
References
[1]
Lybbert, T.J. and Sumner, D.A. (2012) Agricultural Technologies for Climate Change in Developing Countries: Policy Options for Innovation and Technology Diffusion. Food Policy, 37, 114-123. https://doi.org/10.1016/j.foodpol.2011.11.001
[2]
Abebaw, D. and Haile, M.G. (2013) The Impact of Cooperatives on Agricultural Technology Adoption: Empirical Evidence from Ethiopia. Food Policy, 38, 82-91. https://doi.org/10.1016/j.foodpol.2012.10.003
[3]
Khonje, M., Manda, J., Alene, A.D. and Kassie, M. (2015) Analysis of Adoption and Impacts of Improved Maize Varieties in Eastern Zambia. World Development, 66, 695-706. https://doi.org/10.1016/j.worlddev.2014.09.008
[4]
Christiaensen, L. (2017) Agriculture in Africa—Telling Myths from Facts: A Synthesis. Food Policy, 67, 1-11. https://doi.org/10.1016/j.foodpol.2017.02.002
[5]
Adeoti, R., Coulibaly, O. and Tamo, M. (2003) Facteurs affectant l’adoption des nouvelles technologies du niébé Vigna unguiculata en Afrique de l’Ouest. Bulletin de la Recherche Agronomique, 36, 19-32.
[6]
Abdulai, A. and Huffman, W.E. (2005) The Diffusion of New Agricultural Technologies: The Case of Crossbred-Cow Technology in Tanzania. American Journal of Agricultural Economics, 87, 645-659. https://doi.org/10.1111/j.1467-8276.2005.00753.x
[7]
Qaim, M. (2005) Agricultural Biotechnology Adoption in Developing Countries. American Journal of Agricultural Economics, 87, 1317-1324. https://doi.org/10.1111/j.1467-8276.2005.00825.x
[8]
Qaim, M., Subramanian, A., Naik, G. and Zilberman, D. (2006) Adoption of Bt Cotton and Impact Variability: Insights from India. Applied Economic Perspectives and Policy, 28, 48-58. https://doi.org/10.1111/j.1467-9353.2006.00272.x
[9]
Moyo, S., Norton, G.W., Alwang, J., Rhinehart, I. and Deom, C.M. (2007) Peanut Research and Poverty Reduction: Impacts of Variety Improvement to Control Peanut Viruses in Uganda. American Journal of Agricultural Economics, 89, 448-460. https://doi.org/10.1111/j.1467-8276.2007.00991.x
[10]
Noltze, M., Schwarze, S. and Qaim, M. (2012) Understanding the Adoption of System Technologies in Smallholder Agriculture: The System of Rice Intensification (SRI) in Timor Leste. Agricultural Systems, 108, 64-73. https://doi.org/10.1016/j.agsy.2012.01.003
[11]
Abdulai, A. and Huffman, W. (2014) The Adoption and Impact of Soil and Water Conservation Technology: An Endogenous Switching Regression Application. Land Economics, 90, 26-43. https://doi.org/10.3368/le.90.1.26
[12]
Auvraym L., Hensgen, F. and Sermet, C. (2003) La diffusion de l’innovation pharmaceutique en médecine libérale: Revue de la littérature et premiers résultats français. Bulletin d’information en économie de la santée, No. 73, 1-8.
[13]
Barham, B.L., Foltz, J.D., Jackson-Smith, D. and Moon, S. (2004) The Dynamics of Agricultural Biotechnology Adoption: Lessons from rBST Use in Wisconsin, 1994-2001. American Journal of Agricultural Economics, 86, 61-72. https://doi.org/10.1111/j.0092-5853.2004.00562.x
[14]
Moser, C.M. and Barrett, C.B. (2006) The Complex Dynamics of Smallholder Technology Adoption: The Case of SRI in Madagascar. Agricultural Economics, 35, 373-388. https://doi.org/10.1111/j.1574-0862.2006.00169.x
[15]
Aldana, U., Foltz, J.D., Barham, B.L. and Useche, P. (2011) Sequential Adoption of Package Technologies: The Dynamics of Stacked Trait Corn Adoption. American Journal of Agricultural Economics, 93, 130-143. https://doi.org/10.1093/ajae/aaq112
[16]
Lindner, R.K., Pardey, P.G. and Jarrett, F.G. (1982) Distance to Information Source and the Time Lag to Early Adoption of Trace Element Fertilisers. Australian Journal of Agricultural Economics, 26, 98-113. https://doi.org/10.1111/j.1467-8489.1982.tb00618.x
[17]
Keil, A., Zeller, M. and Franzel, S. (2005) Improved Tree Fallows in Smallholder Maize Production in Zambia: Do Initial Testers Adopt the Technology? Agroforestry Systems, 64, 225-236. https://doi.org/10.1007/s10457-004-2410-0
[18]
Lambrecht, I., Vanlauwe, B., Merckx, R. and Maertens, M. (2014) Understanding the Process of Agricultural Technology Adoption: Mineral Fertilizer in Eastern DR Congo. World Development, 59, 132-146. https://doi.org/10.1016/j.worlddev.2014.01.024
[19]
Rogers, E.M. (1962) Diffusion of Innovations. The Free Press, New York.
[20]
Gray, V. (1973) Innovation in the States: A Diffusion Study. The American Political Science Review, 67, 1174-1185. https://doi.org/10.2307/1956539
[21]
Walker, J.L. (1969) The Diffusion of Innovations among the American States. The American Political Science Review, 63, 880-899. https://doi.org/10.2307/1954434
[22]
Läpple, D. and Rensburg, T.V. (2011) Adoption of Organic Farming: Are There Differences between Early and Late Adoption? Ecological Economics, 70, 1406-1414. https://doi.org/10.1016/j.ecolecon.2011.03.002
[23]
Diederen, P., Van Meijl, H., Wolters, A. and Bijak, K. (2003) Innovation Adoption in Agriculture: Innovators, Early Adopters and Laggards. Cahiers d’Economie et de Sociologie Rurales, 67, 29-50. https://doi.org/10.3406/reae.2003.1714
[24]
Ryan, B. and Gross, N.C. (1950) Acceptance and Diffusion of Hybrid Corn Seed in Two Iowa Communities. Iowa State University of Science and Technology, Ames, 372.
[25]
Foltz, J.D. and Chang, H.-H. (2002) The Adoption and Profitability of rbST on Connecticut Dairy Farms. American Journal of Agricultural Economics, 84, 1021-1032. https://doi.org/10.1111/1467-8276.00364
[26]
Feder, G. and Slade, R. (1984) The Acquisition of Information and the Adoption of New Technology. American Journal of Agricultural Economics, 66, 312-320. https://doi.org/10.2307/1240798
[27]
Rogers, E.M. (1995) The Diffusion of Innovations. 4éme Edition, The Free Press, New York.
[28]
Nguyen-Van, P., Poiraud, C. and To-The, N. (2017) Modeling Farmers’ Decisions on Tea Varieties in Vietnam: A Multinomial Logit Analysis. Agricultural Economics, 48, 291-299. https://doi.org/10.1111/agec.12334
[29]
ANSD (2014) Situation économique et Sociale du Sénégal (SES) en 2014: Chapitre Agriculture. Agence Nationale de Statistique et de Démographie.
[30]
ISRA (2010) Iagnostique de la culture de riz en Haute Casamance et au Sénégal Oriental. https://www.memoireonline.com/10/12/6368/Diagnostic-agronomique-de-la-culture-du-riz-en-Haute-Casamance-et-au-Senegal-Oriental.html
[31]
Ntsama Etoundi, S.M. and Kamgnia Dia, B. (2008) Determinants of the Adoption of Improved Varieties of Maize in Cameroon: Case of CMS 8704. Proceedings of the African Economic Conference, Tunis, 27-29 October 2010, 397-413. https://mpra.ub.uni-muenchen.de/37783
[32]
Cunguara, B. and Darnhofer, I. (2011) Assessing the Impact of Improved Agricultural Technologies on Household Income in Rural Mozambique. Food Policy, 36, 378-390. https://doi.org/10.1016/j.foodpol.2011.03.002
[33]
Uaiene, R.N. (2011) Determinants of Agricultural Technology Adoption in Mozambique. 10th African Crop Science Conference Proceedings, Maputo, 10-13 October 2011, 31. https://www.cabdirect.org/cabdirect/abstract/20133200277
[34]
MAER (2014) Document du Programme d’Accélération de la Cadence de l’Agriculture Sénégalaise (PRACAS), Volet agricole. Ministère de l’Agriculture et de l’Equipement Rural du Sénégal ou MAER. https://www.ipar.sn/Programme-d-Acceleration-de-la-Cadence-de-l-Agriculture-Senegalaise-PRACAS.html
[35]
Arslan, A., McCarthy, N., Lipper, L., Asfaw, S. and Cattaneo, A. (2014) Adoption and Intensity of Adoption of Conservation Farming Practices in Zambia. Agriculture, Ecosystems & Environment, 187, 72-86. https://doi.org/10.1016/j.agee.2013.08.017
[36]
Bellon, M.R. and Risopoulos, J. (2001) Small-Scale Farmers Expand the Benefits of Improved Maize Germplasm: A Case Study from Chiapas, Mexico. World Development, 29, 799-811. https://doi.org/10.1016/S0305-750X(01)00013-4
[37]
Becerril, J. and Abdulai, A. (2010) The Impact of Improved Maize Varieties on Poverty in Mexico: A Propensity Score-Matching Approach. World Development, 38, 1024-1035. https://doi.org/10.1016/j.worlddev.2009.11.017
[38]
Lawrence, P.G., Sanders, J.H. and Ramaswamy, S. (1999) The Impact of Agricultural and Household Technologies on Women: A Conceptual and Quantitative Analysis in Burkina Faso. Agricultural Economics, 20, 203-214. https://doi.org/10.1111/j.1574-0862.1999.tb00567.x
[39]
Doss, C.R. (2006) Analyzing Technology Adoption Using Microstudies: Limitations, Challenges, and Opportunities for Improvement. Agricultural Economics, 34, 207-219. https://doi.org/10.1111/j.1574-0864.2006.00119.x
[40]
Fisher, M. and Kandiwa, V. (2014) Can Agricultural Input Subsidies Reduce the Gender Gap in Modern Maize Adoption? Evidence from Malawi. Food Policy, 45, 101-111. https://doi.org/10.1016/j.foodpol.2014.01.007
[41]
Ndiritu, S.W., Kassie, M. and Shiferaw, B. (2014) Are There Systematic Gender Differences in the Adoption of Sustainable Agricultural Intensification Practices? Evidence from Kenya. Food Policy, 49, 117-127. https://doi.org/10.1016/j.foodpol.2014.06.010
[42]
Doss, C.R. and Morris, M.L. (2000) How Does Gender Affect the Adoption of Agricultural Innovations? Agricultural Economics, 25, 27-39. https://doi.org/10.1111/j.1574-0862.2001.tb00233.x
[43]
Kabunga, N.S., Dubois, T. and Qaim, M. (2014) Impact of Tissue Culture Banana Technology on Farm Household Income and Food Security in Kenya. Food Policy, 45, 25-34. https://doi.org/10.1016/j.foodpol.2013.12.009
[44]
Dercon, S. and Christiaensen, L. (2011) Consumption Risk, Technology Adoption and Poverty Traps: Evidence from Ethiopia. Journal of Development Economics, 96, 159-173. https://doi.org/10.1016/j.jdeveco.2010.08.003
[45]
Amemiya, T. (1975) Qualitative Response Models. Annals of Economic and Social Measurement, 4, 363-372. https://www.nber.org/books-and-chapters/annals-economic-and-social-measurement-volume-4-number-3/qualitative-response-models
[46]
Peng, C.-Y.J., Lee, K.L. and Ingersoll, G.M. (2002) An Introduction to Logistic Regression Analysis and Reporting. The Journal of Educational Research, 96, 3-14. https://doi.org/10.1080/00220670209598786
[47]
Long, J.S. and Freese, J. (2005) Regression Models for Categorical Outcomes Using Stata. https://doi.org/10.4135/9781848608184.n11
[48]
Xu, J. and Long, J.S. (2005) Confidence Intervals for Predicted Outcomes in Regression Models for Categorical Outcomes. The Stata Journal, 5, 537-559. https://doi.org/10.1177/1536867X0500500405
[49]
Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2004) GLLAMM Manual. U.C. Berkeley Division of Biostatistics Working Paper Series. https://biostats.bepress.com/ucbbiostat/paper160
[50]
Haan, P. and Uhlendorff, A. (2006) Estimation of Multinomial Logit Models with Unobserved Heterogeneity Using Maximum Simulated Likelihood. The Stata Journal, 6, 229-245. https://doi.org/10.1177/1536867X0600600205
[51]
McFadden, D. and Train, K. (2000) Mixed MNL Models for Discrete Response. Journal of Applied Economics, 15, 447-470. https://doi.org/10.1002/1099-1255(200009/10)15:5<447::AID-JAE570>3.0.CO;2-1
[52]
Wooldridge, J.M. (2014) Quasi-Maximum Likelihood Estimation and Testing for Nonlinear Models with Endogenous Explanatory Variables. Journal of Economics, 182, 226-234. https://doi.org/10.1016/j.jeconom.2014.04.020
[53]
Hausman, J.A. and McFadden, D. (1984) Specification Tests for the Multinomial Logit Model. Econometrica, 52, 1219-1240. https://doi.org/10.2307/1910997
[54]
Long, J.S. and Freese, J. (2005) Regression Models for Categorical Outcomes. Stata Press, College Station, 311.
[55]
Williams, R. (2018) Post-Estimation Commands for MLogit. https://www3.nd.edu/~rwilliam
[56]
Combarnous, F. (1999) La mise en oeuvre du modèle logistique multinomial emboîté dans l’analyse de la participation au marché du travail. Univ. Montesquieu-Bordx. IV Doc. Trav., No. 39.
[57]
Barham, B.L., Chavas, J.-P., Fitz, D. and Schechter, L. (2018) Receptiveness to Advice, Cognitive Ability, and Technology Adoption. Journal of Economic Behavior & Organization, 149, 239-268. https://doi.org/10.1016/j.jebo.2017.12.025
[58]
Adegbola, P.Y., Arouna, A. and Ahoyo, N.R.A. (2011) Analyse des facteurs affectant l’adoption des greniers améliorés pour le stockage du maïs au Sud-Bénin. Bulletin de la Recherche Agronomique du Bénin, 2, 43-50.
[59]
Liu, E.M. (2013) Time to Change What to Sow: Risk Preferences and Technology Adoption Decisions of Cotton Farmers in China. The Review of Economics and Statistics, 95, 1386-1403. https://doi.org/10.1162/REST_a_00295
[60]
Shiferaw, B., Kassie, M., Jaleta, M. and Yirga, C. (2014) Adoption of Improved Wheat Varieties and Impacts on Household Food Security in Ethiopia. Food Policy, 44, 272-284. https://doi.org/10.1016/j.foodpol.2013.09.012