All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Diffusion Coefficient at Double Resonances in Frequency and Temperature, Applied to (n+/p/p+) Silicon Solar Cell Base Thickness Optimization under Long Wavelength Illumination

DOI: 10.4236/jemaa.2022.148008, PP. 89-103

Keywords: Silicon Solar Cell-Diffusion Coefficient, Recombination Velocity, Absorption Coefficient, Magnetic Field-Temperature-Thickness

Full-Text   Cite this paper   Add to My Lib

Abstract:

The diffusion coefficient of the minority charge carriers in the base of a silicon solar cell under temperature and subjected to a magnetic field, passes in reso-nance at temperature (Topt). For this same magnetic field, the diffusion coeffi-cient of the photogenerated carriers by a monochromatic light in frequency modulation enters into resonance, at the frequency (ωc). Under this double resonance in temperature and frequency, the diffusion coefficient is used in the expression of the recombination velocity of the minority charge carriers on the back side of the base of the solar cell (n+/p/p+), to obtain, by a graphical method, the optimum thickness. A modeling of the results obtained shows a material saving (Si), in the development of the solar cell.

References

[1]  Chung, F., Kuo, C.-F.J., Tu, H.-M., Liang, S.-W. and Tsai, W.-L. (2010) Optimization of Microcrystalline Silicon Thin Film Solar Cell Isolation Processing Parameters Using Ultraviolet Laser. Optics & Laser Technology, 42, 945-955.
https://doi.org/10.1016/j.optlastec.2010.01.013
[2]  Andoh, N., Hayashi, K., Shirasawa, T., Sameshima, T. and Kamisako, K. (2001) Effect of Film Thickness on Electrical Property of Microcrystalline Silicon. Solar Energy Materials and Solar Cells, 66, 437-441.
https://doi.org/10.1016/S0927-0248(00)00205-1
[3]  Dieng, M., Seibou, B., Ly, I., Diouf, M.S., Wade, M. and Sissoko, G. (2017) Silicon Solar Cell Emitter Extended Space Charge Region Determination under Modulated Monochromatic Illumination by Using Gauss’s Law. International Journal of Innovative Technology and Exploring Engineering, 6, 17-20.
[4]  Diatta, I., Ly, I., Wade, M., Diouf, M.S., Mbodji, S. and Sissoko, G. (2017) Temperature Effect on Capacitance of a Silicon Solar Cell under Constant White Biased Light. World Journal of Condensed Matter Physics, 6, 261-268.
https://doi.org/10.4236/wjcmp.2016.63024
[5]  Mbodji, S., Mbow, B., Barro, F.I. and Sissoko, G. (2011) A 3D Model for Thickness and Diffusion Capacitance of Emitter-Base Junction Determination in a Bifacial Polycrystalline Solar Cell under Real Operating Condition. Turkish Journal of Physics, 35, 281-291.
https://doi.org/10.3906/fiz-0911-25
[6]  Sissoko, G., Dieng, B., Corréa, A., Adj, M. and Azilinon, D. (1998) Silicon Solar Cell Space Charge Region Width Determination by a Study in Modelling. Renewable Energy, 3, 1852-1855.
[7]  Yasar, S., Kahraman, S., Cetinkaya, S., Apaydin, S., Bilican, I. and Uluer, I. (2016) Numerical Thickness Optimization Study of CIGS Based Solar Cells with wxAMPS, Optik, 127, 8827-8835.
https://doi.org/10.1016/j.ijleo.2016.06.094
[8]  Sow, E., Mbodji, S., Zouma, B., Zoungrana, M., Zerbo, I., Sere, A. and Sissoko, G. (2012) Determination in 3D Modeling Study of the Width Emitter Extension Region of the Solar Cell Operating in Open Circuit Condition by the Gauss’s Law. International Journal of Science, Environment and Technology (IJSET), 1, 230-246.
[9]  Sun, X., Khan, M.R., Deline, C. and Alam, M.A. (2018) Optimization and Performance of Bifacial Solar Modules: A Global Perspective. Applied Energy, 212, 1601-1610.
https://doi.org/10.1016/j.apenergy.2017.12.041
[10]  Sayem, A.A., Arafat, Y. and Rahman, M.M. (2014) Thickness Optimization and Composition Grading Effect in Heterojunction CIGS Solar Cell. 8th International Conference on Electrical and Computer Engineering, Dhaka, 20 December 2014, 524-527.
https://doi.org/10.1109/ICECE.2014.7026952
[11]  Caleb Dhanasekaran, P. and Gopalam, B.S.V (1981) Effect of Junction Depth on the Performance of a Diffused n+ p Silicon Solar Cell. Solids-State Electronics, 24, 1077-1080.
https://doi.org/10.1016/0038-1101(81)90172-6
[12]  Van Steenwinkel, R., Carotta, M.C., Martinelli, G., Mercli, M., Passari, L. and Palmeri, D. (1990) Lifetime Measurement in Solar Cell of Various Thickness and Related Silicon Wafer. Solar Cells, 28, 287-292.
https://doi.org/10.1016/0379-6787(90)90063-B
[13]  Honma, N. and Munakata, C. (1987) Sample Thickness Dependence of Minority Carrier Lifetimes Measured Using an ac Photovoltaic Method. Japanese Journal of Applied Physics, 26, 2033-2036.
https://doi.org/10.1143/JJAP.26.2033
[14]  Barro, F.I., Mbodji, S., Ndiaye, M., Ba, E. and Sissoko, G. (2008) Influence of Grains Size and Grains Boundaries Recombination on the Space-Charge Layer Thickness z of Emitter-Base Junction’s n+-p-p Solar Cell. Proceedings of 23rd European Photovoltaic Solar Energy Conference and Exhibition, Valencia, 1-5 September 2008, 604-607.
[15]  Sall, M., Diarisso, D., Faty Mbaye Fall, M., Diop, G., Ndiaye, M., Loum, K. and Sissoko, G. (2021) Back Illuminated N/P/P+ Bifacial Silicon Solar Cell under Modulated Short-Wavelength: Determination of Base Optimum Thickness. Energy and Power Engineering, 13, 207-220.
https://doi.org/10.4236/epe.2021.135014
[16]  Ndiaye, A., Gueye, S., Sow, O., Diop, G., Ba, A., Ba, M., Diatta, I., Habiboullah, L. and Sissoko, G. (2020) A.C. Recombination Velocity as Applied to Determine n+/p/p+ Silicon Solar Cell Base Optimum Thickness. Energy and Power Engineering, 12, 543-554.
https://doi.org/10.4236/epe.2020.1210033
[17]  Ndiaye, M., Sow, O., Diatta, I., Diop, G., Faye, D., Loum, K., Traore, Y., Thiame, M., Wade, M. and Sissoko, G. (2022) Optimization of the Thickness of the Doping Rate Base (Nb) of the (n+/p/p+) Silicon Solar Cell with Vertical Multi-Junction Connected in Series and Placed under Monochromatic Illumination in Frequency Modulation. Journal of Chemical, Biological and Physical Sciences, 12, 266-280.
https://doi.org/10.24214/jcbps.C.12.4.25165
[18]  Demesmaeker, E., Symons, J., Nijs, J. and Mertens, R. (1991) The Influence of Surface Recombination on the Limiting Efficiency and Optimum Thickness of Silicon Solar Cells. 10th European Photovoltaic Solar Energy Conference, Lisbon, 8-12 April 1991, 66-67.
https://doi.org/10.1007/978-94-011-3622-8_17
[19]  Antilla, O.J. and Hahn, S.K. (1993) Study on Surface Photovoltage Measurement of Long Diffusion Length Silicon: Simulation Results. Journal of Applied Physics, 74, 558-569.
https://doi.org/10.1063/1.355343
[20]  Stokes, E.D. and Chu, T.L. (1977) Diffusion Lengths in Solar Cells from Short-Circuit Current Measurements. Applied Physics Letters, 30, 425-426.
https://doi.org/10.1063/1.89433
[21]  Gupta, S., Ahmed, P. and Garg, S. (1988) A Method for the Determination of the Material Parameters D, L, S and α from Measured Short-Circuit Photocurrent. Solar Cells, 25, 61-72.
https://doi.org/10.1016/0379-6787(88)90058-0
[22]  Mandelis, A., Ward, A. and Lee, K.T. (1989) Combined AC Photocurrent and Photothermal Reflectance Response Theory of Semiconducting p-n Junctions. Journal of Applied Physics, 66, 5572-5583.
https://doi.org/10.1063/1.343662
[23]  Luc, B., Shahriar, M., Dean, H., Marco, S., Manuela, A. and Claudio, N. (1994) Investigation of Carrier Transport through Silicon Wafers by Photocurrent Measurement. Journal of Applied Physics, 75, 4000-4008.
https://doi.org/10.1063/1.356022
[24]  Dieng, A., Zerbo, I., Wade, M., Maiga, A.S. and Sissoko, G. (2011) Three-Dimensional Study of a Polycrystalline Silicon Solar Cell: The Influence of the Applied Magnetic Field on the Electrical Parameters. Semiconductor Science and Technology, 26, Article ID: 095023.
https://doi.org/10.1088/0268-1242/26/9/095023
[25]  Ly Diallo, H., Wade, M., Ly, I., NDiaye, M., Dieng, B., Lemrabott, O.H., Maïga, A. S. and Sissoko, G. (2012) 1D Modeling of a Bifacial Silicon Solar Cell under Frequency Modulation, Monochromatic Illumination: Determination of the Equivalent Electrical Circuit Related to the Surface Recombination Velocity. Research Journal of Applied Sciences, Engineering and Technology, 4, 1672-1676.
http://www.maxwell.org
[26]  Ly, I., Zerbo, I., Wade, M., Ndiaye, M., Dieng, A., Diao, A., Thiam, N., Thiam, A., Dione, M.M., Barro, F.I., Maiga, A.S. and Sissoko, G. (2011) Bifacial Silicon Solar Cell under Frequency Modulation and Monochromatic Illumination: Recombination Velocities and Associated Equivalent Electrical Circuits. Proceedings of 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, 5-9 September 2011, 298-301.
[27]  Diallo, H.L., Maiga, A.S., Wereme, A. and Sissoko, G. (2008) New Approach of Both Junction and Back Surface Recombination Velocities in a 3D Modelling Study of a Polycrystalline Silicon Solar Cell. The European Physical Journal Applied Physics, 42, 193-211.
https://doi.org/10.1051/epjap:2008085
[28]  Casimir, H.B.G. (1938) Note on the Conduction of Heat in Crystals. Physica, 5, 495-500.
https://doi.org/10.1016/S0031-8914(38)80162-2
[29]  Berman, R. (1951) Thermal Conductivity of Dielectric Crystals: The “Umklapp”. Nature, 168, 277-280.
https://doi.org/10.1038/168277a0
[30]  De Haas, W.J. and Biermasz, T.H. (1935) The Thermal Conductivity of Quartz at Low Temperatures. Physica, 2, 673-682.
https://doi.org/10.1016/S0031-8914(35)90143-4
[31]  Singh, P., Singh, S.N., Lal, M. and Husain, M. (2008) Temperature Dependence of I-V Characteristics and Performance Parameters of Silicon Solar Cell. Solar Energy Materials & Solar Cells, 92, 1611-1616.
https://doi.org/10.1016/j.solmat.2008.07.010
[32]  Madougou, S., Made, F., Boukary, M.S. and Sissoko, G. (2007) I-V Characteristics for Bifacial Silicon Solar Cell Studied under a Magnetic Field. Advanced Materials Research, 18, 303-312.
https://doi.org/10.4028/www.scientific.net/AMR.18-19.303
[33]  Vardanyan, R.R., Kerst, U., Wawer, P., Nell, M.E. and Wagemann, H.G. (1998) Method for Measurement of All Recombination Parameters in the Base Region of Solar Cells. 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, Vienna, 6-10 July 1998, 191-193.
[34]  Mane, R., Ly, I., Wade, M., Datta, I., Douf, M.S., Traore, Y., Ndiaye, M., Tamba, S. and Sissoko, G. (2017) Minority Carrier Diffusion Coefficient D*(B, T): Study in Temperature on a Silicon Solar Cell under Magnetic Field. Energy and Power Engineering, 9, 1-10.
http://www.scirp.org/journal/epe
https://doi.org/10.4236/epe.2017.91001
[35]  Fall, M.F.M., Gaye, I., Diarrisso, D., Diop, G., Loum, K., Diop, N., Sy, K.M., Ndiaye, M. and Sissoko, G. (2021) AC Back Surface Recombination Velocity in n+/p/p+ Silicon Solar Cell under Monochromatic Light and Temperature. Journal of Electromagnetic Analysis and Applications, 13, 67-81.
https://doi.org/10.4236/jemaa.2021.135005
[36]  Denise, K., Mamadou, L.B., Mamour, A.B., Gora, D., El Hadj, S., Oulimata, M. and Gregoire, S. (2020) AC Back Surface Recombination in n+-p-p+ Silicon Solar Cell: Effect of Temperature. International Journal of advanced Research (IJAR), 8, 140-151.
https://doi.org/10.21474/IJAR01/11273
[37]  Diao, A., Thiam, N., Zoungrana, M., Sahin, G., Ndiaye, M. and Sissoko, G. (2014) Diffusion Coefficient in Silicon Solar Cell with Applied Magnetic Field and under Frequency: Electric Equivalent Circuits. World Journal of Condensed Matter Physics, 4, 84-92.
https://doi.org/10.4236/wjcmp.2014.42013
[38]  Seydina, D., Mor, N., Ndeye, T., Youssou, T., Mamadou, L.B., Ibrahima, D., Marcel, S.D., Oulimata, M., Amary, T. and Grégoire, S. (2019) Influence of Temperature and Frequency on Minority Carrier Diffusion Coefficient in a Silicon Solar Cell under Magnetic Field. Energy and Power Engineering, 11, 355-361.
https://doi.org/10.4236/epe.2019.1110023
[39]  Ndiaye, E.H., Sahin, G., Dieng, M., Thiam, A., Diallo, H.L., Ndiaye, M. and Sissoko, G. (2015) Study of the Intrinsic Recombination Velocity at the Junction of Silicon Solar under Frequency Modulation and Irradiation. Journal of Applied Mathematics and Physics, 3, 1522-1535.
https://doi.org/10.4236/jamp.2015.311177
[40]  Sylla, B., Ly, I., Sow, O., Dione, B., Traore, Y. and Sissoko, G. (2018) Junction Surface Recombination Concept as Applied to Silicon Solar Cell Maximum Power Point Determination Using Matlab/Simulink: Effect of Temperature. Journal of Modern Physics, 9, 172-188.
https://doi.org/10.4236/jmp.2018.92011
[41]  Sissoko, G., Sivoththanam, S., Rodot, M. and Mialhe, P. (1992) Constant Illumination-Induced Open Circuit Voltage Decay (CIOCVD) Method, as Applied to High Efficiency Si Solar Cells for Bulk and Back Surface Characterization. 11th European Photovoltaic Solar Energy Conference and Exhibition, Monteux, 12-16 October 1992, 352-354.
[42]  Sissoko, G., Nanema, E., Correa, A., Adj, M., Ndiaye, A.L. and Diarra, M.N. (1998) Recombination Parameters Measurement in Double Sided Surface Field Solar Cell. Proceedings of World Renewable Energy Conference, Florence, 20-25 September 1998, 1856-1859.
[43]  Sissoko, G., Museruka, C., Corréa, A., Gaye, I. and Ndiaye, A.L. (1996) Light Spectral Effect on Recombination Parameters of Silicon Solar Cell. World Renewable Energy Congress, Pergamon, Part III, 1487-1490.
[44]  Ndiaye, A., Gueye, S., Mbaye Fall, M., Diop, G., Ba, A., Ba, M., Diatta, I., Habiboullah, L. and Sissoko, G. (2020) Diffusion Coefficient at Resonance Frequency as Applied to n+/p/p+ Silicon Solar Cell Optimum Base Thickness Determination. Journal of Electromagnetic Analysis and Applications, 12, 145-158.
https://doi.org/10.4236/jemaa.2020.1210012
[45]  Sissoko, G. and Mbodji, S. (2015) A Method to Determine the Solar Cell Resistances from Single I-V. Characteristic Curve Considering the Junction Recombination Velocity (Sf). International Journal of Pure and Applied Sciences and Technology, 6, 103-114.
http://www.ijopaasat.in/
[46]  Diouf, M.S., Gaye, I., Thiam, A., Fall, M.F.M., Ly, I. and Sissoko, G. (2014) Junction Recombination Velocity Induced Open Circuit Voltage for a Silicon Solar Cell under External Electric Field. Current Trends in Technology & Sciences (CTTS), 3, 372-375.
[47]  Gaubas, E. and Vanhellemont, J. (1996) A Simple Technique for the Separation of Bulk and Surface Recombination Parameters in Silicon. Journal of Applied Physics, 80, 6293-6297.
https://doi.org/10.1063/1.363705
[48]  Diasse, O., Diao, A., Ly, I., Diouf, M.S., Diatta, I., Mane, R., Traore, Y. and Sissoko, G. (2018) Back Surface Recombination Velocity Modeling in White Biased Silicon Solar Cell under Steady State. Journal of Modern Physics, 9, 189-201.
https://doi.org/10.4236/jmp.2018.92012
[49]  Zerbo, I., Barro, F.I., Mbow, B., Diao, A., Madougou, S., Zougmore, F. and Sissoko, G. (2004) Theoretical Study of Bifacial Silicon Solar Cell under Frequency Modulate white Light: Determination of Recombination Parameters. Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, 7-11 June 2004, 258-261.
[50]  Traore, Y., Thiam, N., Thiame, M., Thiam, A., Ba, M.L., Diouf, M.S., Diatta, I., Mballo, O., Sow, E.H., Wade, M. and Sissoko, G. (2019) AC Recombination Velocity in the Back Surface of a Lamella Silicon Solar Cell under Temperature. Journal of Modern Physics, 10, 1235-1246.
https://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2019.1010082
[51]  Gueye, M., Diallo, H.L., Moustapha, A.K.M., Traore, Y., Diatta, I. and Sissoko, G. (2018) Ac Recombination Velocity in a Lamella Silicon Solar Cell. World Journal of Condensed Matter Physics, 8, 185-196.
https://doi.org/10.4236/wjcmp.2018.84013
[52]  Wang, C.H. and Neugroschel, A. (1991) Minority-Carrier Lifetime and Surface Recombination Velocity Measurement by Frequency-Domain Photoluminescence. IEEE Transactions on Electron Devices, 38, 2169-2180.
https://doi.org/10.1109/16.83745
[53]  Green, M.A. and Keevers, M. (1995) Optical Properties of Intrinsic Silicon at 300K. Progress in Photovoltaics, 3, 189-192.
https://doi.org/10.1002/pip.4670030303
[54]  Ray, U.C. and Agarwal, S.K. (1988) Wavelength Dependence of Short-Circuit Current Decay in Solar Cells. Journal of Applied Physics, 63, 547-549.
https://doi.org/10.1063/1.340084
[55]  Thiam, N., Diao, A., Ndiaye, M., Dieng, A., Thiam, A., Sarr, M., Maiga, A.S. and Sissoko, G. (2012) Electric Equivalent Models of Intrinsic Recombination Velocities of a Bifacial Silicon Solar Cell under Frequency Modulation and Magnetic Field Effect. Research Journal of Applied Sciences, Engineering and Technology, 4, 4646-4655.
[56]  Flohr, Th. and Helbig, R. (1989) Determination of Minority-Carrier Lifetime and Surface Recombination Velocity by Optical-Beam-Induced-Current Measurements at Different Light Wavelengths. Journal of Applied Physics, 66, 3060-3065.
https://doi.org/10.1063/1.344161
[57]  Betser, Y., Ritter, D., Bahir, G., Cohen, S. and Serling, J. (1995) Measurement of the Minority Carrier Mobility in the Base of Heterojunction Bipolar Transistors Using a Magneto Transport Method. Applied Physics Letters, 67, 1883-1884.
https://doi.org/10.1063/1.114364
[58]  Kunst, M. and Sanders, A. (1992) Transport of Excess Carriers in Silicon Wafers. Semiconductor Science and Technology, 7, 51-59.
https://doi.org/10.1088/0268-1242/7/1/009
[59]  Fossum, J.G (1977) Physical Operation of Back-Surface-Field Silicon Solar Cells. IEEE Transactions on Electron Devices, 2, 322-325.
https://doi.org/10.1109/T-ED.1977.18735
[60]  Nam, L.Q., Rodot, M., Ghannam, M., Cppye, J., de Schepper, P. and Nijs, J. (1992) Solar Cells with 15.6% Efficiency on Multicristalline Silicone, Using Impurity Gettering, Back Surface Field and Emitter Passivation. International Journal of Solar Energy, 11, 273-279.
https://doi.org/10.1080/01425919208909745
[61]  Ly, I., Ndiaye, M., Wade, M., Thiam, N., Gueye, S. and Sissoko, G. (2013) Concept of Recombination Velocity Sfcc at the Junction of a Bifacial Silicon Solar Cell, in Steady State, Initiating the Short-Circuit Condition. Research Journal of Applied Sciences, Engineering and Technology, 5, 203-208.
https://doi.org/10.19026/rjaset.5.5105
[62]  Basu, P.K. and Singh, S.N. (1994) On the Determination of Minority Carrier Diffusion Length in the Base Region of n+-p-p+ Silicon Solar Cells Using Photoresponse Methods. Solar Energy Materials and Solar Cells, 33, 317-329.
https://doi.org/10.1016/0927-0248(94)90234-8
[63]  Sidi Dede, M., Lamine Ba, M., Amadou Ba, M., Ndiaye, M., Gueye, S., Sow, E., Diatta, I., Diop, M., Wade, M. and Sissoko, G. (2020) Back Surface Recombination Velocity Dependent of Absorption Coefficient as Applied to Determine Base Optimum Thickness of an n+/p/p+ Silicon Solar Cell. Energy and Power Engineering, 12, 445-458.
https://doi.org/10.4236/epe.2020.127027
[64]  Dione, G.N., BA, H.Y., Diop, G., Ndiaye, M., Diatta, I., Loum, K., Traore, Y., Thiame, M., Sow, O., Wade, M. and Gregoire, S. (2022) Bifacial (n+-p-p+) Silicon Solar Cell Base Thickness Optimization, While Illuminated by the Rear Face with Monochromatic Light of Shortwavelengths. International Journal of Advanced Research (IJAR), 10, 409-418.
https://doi.org/10.21474/IJAR01/15372
[65]  Thiaw, C., Ba, M., Amadou Ba, M., Diop, G., Diatta, I., Ndiaye, M. and Sissoko, G. (2020) n+-p-p+ Silicon Solar Cell Base Optimum Thickness Determination under Magnetic Field. Journal of Electromagnetic Analysis and Applications, 12, 103-113.
https://doi.org/10.4236/jemaa.2020.127009
[66]  Diop, G., Ba, H.Y., Thiam, N., Traore, Y., Dione, B., Ba, M.A., Diop, P., Diop, M.S., Mballo, O. and Sissoko, G. (2019) Base Thickness Optimization of a Vertical Series Junction Silicon Solar Cell under Magnetic Field by the Concept of Back Surface Recombination Velocity of Minority Carrier. ARPN Journal of Engineering and Applied Sciences, 14, 4078-4085.
[67]  Sall, M., Fall, M.F., Diasse, O., Diop, G., Diatta, I., Dia, O., Loum, K., Wade, M. and Sissoko, G. (2022) Determination of the Optimum Thickness of the Base of the n+/p/p+ Silicon Solar Cell, Illuminated by the Rear Face by a Monochromatic Light of Long Wavelength in Frequency Modulation. Journal of Chemical, Biological and Physical Sciences, 12, 64-77.
[68]  Diagne, S., Sow, O., Diop, G., Mane, R., Diatta, I., Ndiongue, D., Traore, Y., Wade, L.H.M. and Sissoko, G. (2022) Optimization of Silicon Solar Cell Base Thickness, While Illuminated by a Long Wavelength Monochromatic Light: Influence of Both Lorentz Law and Umclapp Process. International Journal of Advanced Research, 10, 133-143.
https://doi.org/10.21474/IJAR01/15158
[69]  Mohamed, N.M.M.O., Sow, O., Gueye, S., Traore, Y., Diatta, I., Thiam, A., Ba, M.A., Mane, R., Ly, I. and Sissoko, G. (2019) Influence of Both Magnetic Field and Temperature on Silicon Solar Cell Base Optimum Thickness Determination. Journal of Modern Physics, 10, 1596-1605.
https://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2019.1013105
[70]  Faye, D., Gueye, S., Ndiaye, M., Ba, M.L., Diatta, I., Traore, Y., Diop, M.S., Diop, G., Diao, A. and Sissoko, G. (2020) Lamella Silicon Solar Cell under Both Temperature and Magnetic Field: Width Optimum Determination. Journal of Electromagnetic Analysis and Applications, 12, 43-55.
https://doi.org/10.4236/jemaa.2020.124005
[71]  Dede, M.M.S., Ba, M.L., Ba, M.A., Ndiaye, M., Gueye, S., Sow, E.H., Diatta, I., Diop, M.S., Wade, M. and Sissoko, G. (2020) Back Surface Recombination Velocity Dependent of Absorption Coefficient as Applied to Determine Base Optimum Thickness of an n+/p/p+ Silicon Solar Cell. Energy and Power Engineering, 12, 445-458.
https://www.scirp.org/journal/epe
https://doi.org/10.4236/epe.2020.127027
[72]  Sarr, M., Gaye, I., Ndiaye, S.A., Ba, M.L., Diop, G., Diatta, I., Habiboullah, L. and Sissoko, G. (2021) Effet de l’irradiation par des particules chargees sur le coefficient de diffusion de la base d’une photopile au silicium (n+-p-p+): Determination de l’epaisseur optimum sous eclairement monochromatique. International Journal of Advanced Research, 9, 127-135.
https://doi.org/10.21474/IJAR01/12565

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133