|
一般社会信任与微表情识别准确率之间的关系
|
Abstract:
微表情是一种持续时间很短暂的表情,表达了人们被压抑的真实情绪,通常在说谎情境中被观察到。过往研究发现,催产素是信任的生理基础,催产素会增强社会信任,促进亲社会行为,而增加脑内催产素的水平会显著降低微表情识别的准确率。这提示,个体一般社会信任越高,对微表情识别准确率就越低。本研究通过一个行为研究对该假设进行了检验,其中自变量为一般社会信任,因变量为微表情识别的准确率,协变量为性别、年龄、教育程度。研究通过WVS6的V24题测量一般社会信任,并进行微表情识别任务,最后对数据进行回归分析。结果表明,一般社会信任分数越高的个体,其微表情识别准确率就越低,两者之间呈现显著负相关关系。这提示,高社会信任的个体,可能主动通过抑制对他人微表情的识别来促进人际合作和社会整合。
Micro-expressions are expressions that last for a very short time and are used to express people’s repressed real emotion, usually observed in a lying situation. Previous studies have found that oxytocin is one of the physiological bases of trust, and has a certain impact on the accuracy of micro-expression recognition. In addition, oxytocin can enhance social trust and promote prosocial behavior. Therefore, we speculated that the higher the general social trust, the lower the accuracy of micro-expression recognition of others. Therefore, this study mainly explores the relationship between general social trust and micro-expression recognition accuracy. This study is a correlational study. The independent variable is general social trust, the dependent variable is accuracy of micro-expression recognition, and the covariates are gender, age and education level. Firstly, the general social trust was measured by question V24 of WVS6, and then the micro-expression recognition task was performed. Finally, the experimental data were analyzed by linear regression. The results showed that there was a significant negative association between the general social trust and the recognition accuracy of micro-expressions. These results further suggest individuals who have high general social trust may inhibit the recognition of micro-expressions to facilitate the cooperation and social cohesions.
[1] | 吴奇, 郭惠, 何玲玲(2016). 面部反馈在微表情识别过程中的作用. 心理科学, 39(6), 1353-1358. |
[2] | 吴奇, 申寻兵, 傅小兰(2010). 微表情研究及其应用. 心理科学进展, 18(9), 1359-1368. |
[3] | 颜文靖, 蒋柯, 傅小兰(2022). 心理学视角下的自动表情识别. 智能系统学报, 17(5), 1039-1053. |
[4] | 殷明, 张剑心, 史爱芹, 刘电芝(2016). 微表情的特征?识别?训练和影响因素. 心理科学进展, 24(11), 1723-1736. |
[5] | Aar?e, L., Osmundsen, M., & Petersen, M. B. (2016). Distrust as a Disease Avoidance Strategy: Individual Differences in Disgust Sensitivity Regulate Generalized Social Trust. Frontiers in Psychology, 7, Article No. 1038.
https://doi.org/10.3389/fpsyg.2016.01038 |
[6] | De Dreu, C. K. W., & Kret, M. E. (2016). Oxytocin Conditions Intergroup Relations through Upregulated In-Group Empathy, Cooperation, Conformity, and Defense. Biological Psychiatry, 79, 165-173.
https://doi.org/10.1016/j.biopsych.2015.03.020 |
[7] | Irwin, K. (2009). Prosocial Behavior across Cultures: The Effects of Institutional versus Generalized Trust. In S. R. Thye, & E. J. Lawler (Eds.), Altruism and Prosocial Behavior in Groups (Advances in Group Processes, Vol. 26) (pp. 165-198). Emerald Group Publishing Limited. https://doi.org/10.1108/S0882-6145(2009)0000026010 |
[8] | Kosfeld, M., Heinrichs, M., Zak, P. et al. (2005). Oxytocin Increases Trust in Humans. Nature, 435, 673-676.
https://doi.org/10.1038/nature03701 |
[9] | Leppanen, J., Ng, K. W., Tchanturia, K. et al. (2017). Meta-Analysis of the Effects of Intranasal Oxytocin on Interpretation and Expression of Emotions. Neuroscience and Biobehavioral Reviews, 78, 125-144.
https://doi.org/10.1016/j.neubiorev.2017.04.010 |
[10] | Ma, Y., Shamay-Tsoory, S., Han, S. et al. (2016). Oxytocin and Social Adaptation: Insights from Neuroimaging Studies of Healthy and Clinical Populations. Trends in Cognitive Science, 20, 133-145. https://doi.org/10.1016/j.tics.2015.10.009 |
[11] | Matsumoto, D., Leroux, J., Wilsoncohn, C. et al. (2000). A New Test to Measure Emotion Recognition Ability: Matsumoto and Ekman’s Japanese and Caucasian Brief Affect Recognition Test (JACBART). Journal of Nonverbal Behavior, 24, 179-209. https://doi.org/10.1023/A:1006668120583 |
[12] | Olufisayo, S. E., & Serestina, V. (2021). Facial Expression Recognition: A Review of Trends and Techniques. IEEE Access, 9, 136944-136973. https://doi.org/10.1109/ACCESS.2021.3113464 |
[13] | Pfundmair, M., Erk, W., & Reinelt, A. (2017). “Lie to Me”—Oxytocin Impairs Lie Detection between Sexes. Psychoneuroendocrinology, 84, 135-138. https://doi.org/10.1016/j.psyneuen.2017.07.001 |
[14] | Quintana, D. S., Lischke, A., Grace, S. et al. (2021). Advances in the Field of Intranasal Oxytocin Research: Lessons Learned and Future Directions for Clinical Research. Molecular Psychiatry, 26, 80-91.
https://doi.org/10.1038/s41380-020-00864-7 |
[15] | Shahrestani, S., Kemp, A. H., & Guastella, A. J. (2013). The Impact of a Single Administration of Intranasal Oxytocin on the Recognition of Basic Emotions in Humans: A Me-ta-Analysis. Neuropsychopharmacology, 38, 1929-1936.
https://doi.org/10.1038/npp.2013.86 |
[16] | Shen, X. B., Wu, Q., Zhao, K. et al. (2016). Electrophysiological Evidence Reveals Differences between the Recognition of Micro-Expressions and Macro-Expressions. Frontiers in Psychology, 7, Article No. 1346.
https://doi.org/10.3389/fpsyg.2016.01346 |
[17] | Takalkar, M., Xu, M., Wu, Q. et al. (2018). A Survey: Facial Mi-cro-Expression Recognition. Multimedia Tools and Applications, 77, 19301-19325. https://doi.org/10.1007/s11042-017-5317-2 |
[18] | Wang, S. J., Yan, W. J., Zhao, G. Y. et al. (2015). Micro-Expression Recognition Using Robust Principal Component Analysis and Local Spatiotemporal Directional Features. In L. Agapito, M. M. Bronstein, & C. Rother (Eds.), European Conference on Computer Vision 2014 Workshops (pp. 325-338). Springer. https://doi.org/10.1007/978-3-319-16178-5_23 |
[19] | Welzel, C., & Delhey, J. (2015). Generalizing Trust: The Benign Force of Emancipation. Journal of Cross-Cultural Psychology, 46, 875-896. https://doi.org/10.1177/0022022115588366 |
[20] | Wood, A., Rychlowska, M., Korb, S. et al. (2016). Fashioning the Face: Sensorimotor Simulation Contributes to Facial Expression Recognition. Trends in Cognitive Science, 20, 227-240. https://doi.org/10.1016/j.tics.2015.12.010 |
[21] | Wu, Q., Xie, Y., Liu, X. et al. (2022). Oxytocin Impairs the Recognition of Micro-Expressions of Surprise and Disgust. Frontiers in Psychology, 13, Article ID: 947418. https://doi.org/10.3389/fpsyg.2022.947418 |
[22] | Xia, B., Wang, W. K., Wang, S. F. et al. (2020). Learning from Macro-Expression: A Micro-Expression Recognition Framework. In Proceedings of the 28th ACM International Conference on Multimedia (pp. 2936-2944). Association for Computing Machinery. https://doi.org/10.1145/3394171.3413774 |
[23] | Xie, Y. N., Zhong, C. Y. Zhang, F. Q. et al. (2019). The Ingroup Disadvantage in the Recognition of Micro-Expressions. In The 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019) (pp. 1-5). The Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/FG.2019.8756533 |
[24] | Xu, L., Becker, B., & Kendrick, K. M. (2019). Oxytocin Facilitates Social Learning by Promoting Conformity to Trusted Individuals. Frontiers in Neuroscience, 13, Article No. 56. https://doi.org/10.3389/fnins.2019.00056 |
[25] | Yan, W. J., Wu, Q., Liang, J. et al. (2013). How Fast Are the Leaked Facial Expressions: The Duration of Micro-Expressions. Journal of Nonverbal Behavior, 37, 217-230. https://doi.org/10.1007/s10919-013-0159-8 |
[26] | Yin, L. J., Wei, X. Z., Sun, Y. et al. (2006). A 3D Facial Expression Database for Facial Behavior Research. In 7th International Conference on Automatic Face and Gesture Recognition (FGR06) (pp. 211-216). IEEE.
https://doi.org/10.1109/FGR.2006.6 |
[27] | Young, S. G., & Hugenberg, K. (2010). Mere Social Categorization Modulates Identification of Facial Expressions of Emotion. Journal of Personality and Social Psychology, 99, 964-977. https://doi.org/10.1037/a0020400 |
[28] | Zeng, X., Wu, Q., Zhang, S. et al. (2018). A False Trial to Follow: Differential Effects of the Facial Feedback Signals from the Upper and Lower Face on the Recognition of Micro-Expressions. Frontiers in Psychology, 9, Article No. 2015.
https://doi.org/10.3389/fpsyg.2018.02015 |
[29] | Zhang, L.-F., & Ognjen, A. (2021). Review of Automatic Mi-cro-Expression Recognition in the Past Decade. Machine Learning and Knowledge Extraction, 3, 414-434. https://doi.org/10.3390/make3020021 |