|
加增韧剂钢–聚丙烯纤维桥梁锚固混凝土的抗冲击性能
|
Abstract:
桥梁伸缩缝锚固混凝土受冲击挤压荷载作用较大,应具有较高的力学强度和良好的抗变形韧性。为了提升锚固混凝土的抗冲击性能,论文研究自主开发了一种自由落锤式冲击试验仪,制备了C50 + 钢纤维 + 聚丙烯纤维 + 增韧剂的混杂纤维混凝土,并与普通混凝土、钢纤维混凝土和聚丙烯纤维混凝土三种混凝土作对比分析,试验测试了四种混凝土的抗冲击性能,研究了混杂纤维 + 增韧剂混凝土的技术性能。结果表明:与普通混凝土相比,当加入钢纤维后,初裂冲击耗能提升了5.2倍,终裂冲击耗能提升了5.3倍;当加入聚丙烯纤维后,初裂冲击耗能提升了4.7倍,终裂冲击耗能提升了4.4倍;当加入混杂纤维 + 增韧剂后,初裂冲击耗能提升了9.7倍,终裂冲击耗能提升了9.3倍;加入纤维和增韧剂后,混凝土在开裂后可吸收更多的冲击能量;在所设计的配合比条件下,钢纤维和聚丙烯纤维混杂作用时表现出良好的正混杂效应。
Bridge expansion joint anchored concrete is subject to large impact extrusion load, so it should have high mechanical strength and good resistance to deformation toughness. In order to improve the impact resistance of anchorage concrete, a free drop hammer impact tester was independently developed in this research. We prepared hybrid fiber concrete of C50-steel fiber-polypropylene fiber-toughening agent, and compared it with ordinary concrete, steel fiber concrete, and polypropylene fiber concrete. The impact resistance of four kinds of concretes was tested, based on which the impact resistance of hybrid fiber-toughening agent concrete was further analyzed. The results show that compared with ordinary concrete, when steel fiber is added, the initial crack impact energy consumption increases by 5.2 times, and the final crack impact energy consumption increases by 5.3 times. When polypropylene fiber was added, the impact energy consumption of the initial crack was increased by 4.7 times, and the impact energy consumption of the final crack was increased by 4.4 times. When the hybrid fiber-toughening agent was added, the initial fracture impact energy consumption increased by 9.7 times, and the final fracture impact energy consumption increased by 9.3 times. It can be found that after adding fiber and toughening agents, concrete can absorb more impact energy between the initial crack and final crack. Under the condition of the designed mixing proportion, the mixture of hybrid fiber and the toughening agent has a positive hybrid effect on impact resistance.
[1] | 丁勇, 王佩, 游玖昂, 等. 桥梁伸缩缝冲击荷载计算方法与模型试验[J]. 哈尔滨工业大学学报, 2020, 52(3): 129-135+146. |
[2] | Li, N., Jin, Z.Q., Long, G.C., et al. (2021) Impact Resistance of Steel Fiber-Reinforced Self-Compacting Concrete (SCC) at High Strain Rates. Journal of Building Engineering, 38, Article ID: 102212.
https://doi.org/10.1016/j.jobe.2021.102212 |
[3] | 李娜, 刘艳华, 张忠. 聚丙烯纤维对再生混凝土力学及收缩性能影响研究[J]. 公路工程, 2021, 46(1): 200-204. |
[4] | Al-Rousan, R.Z., et al. (2017) Impact Resistance of Polypropylene Fiber Reinforced Concrete Two-Way Slabs. Structural Engineering and Mechanics, 62, 373-380. https://doi.org/10.12989/sem.2017.62.3.373 |
[5] | 陈倩, 徐礼华, 吴方红, 等. 钢-聚丙烯混杂纤维增强超高性能混凝土强度试验研究[J]. 硅酸盐通报, 2020, 39(3): 740-748, 755. |
[6] | Baboo, R. and Kumar, S.N. (2021) Statistical and Experimental Study to Evaluate the Variability and Reliability of Impact Strength of Steel-Polypropylene Hybrid Fiber Reinforced Concrete. Journal of Building Engineering, 44, Article ID: 102937. https://doi.org/10.1016/j.jobe.2021.102937 |
[7] | Yap, S.P., Bu, C.H., Alengaran, U.J., et al. (2014) Flexural Toughness Characteristics of Steel-Polypropylene Hybrid Fibre-Reinforced Oil Palm Shell Concrete. Materials & Design, 57, 652-659.
https://doi.org/10.1016/j.matdes.2014.01.004 |
[8] | Liang, N.H., et al. (2021) Study on the Fracture Toughness of Polypropylene-Basalt Fiber-Reinforced Concrete. International Journal of Concrete Structures and Materials, 15, Article No. 35.
https://doi.org/10.1186/s40069-021-00472-x |
[9] | 李华伟. 高温固化侧增韧环氧树脂改性沥青的制备与性能研究[D]: [硕士学位论文]. 武汉: 武汉理工大学, 2020: 37-40. |
[10] | 毕继红, 赵云, 鲍春, 等. 不同体积产量的钢纤维在混凝土中的分布研究[J]. 湖南大学学报(自然科学版), 2021, 48(3): 99-108. |
[11] | 叶艳霞, 王宗彬, 谢夫林, 等. 钢纤维增强高强轻骨料混凝土的力学性能[J]. 建筑材料学报, 2021, 24(1): 63-70. |
[12] | 邹艳胜. 掺量及分层布设对钢纤维混凝土力学性能的影响研究[J]. 湖南交通科技, 2021, 47(1): 52-55. |
[13] | Lee, J.H., Cho, B., Kim, J.B., et al. (2018) Shear Capacity of Cast-In Headed Anchors in Steel Fiber-Reinforced Concrete. Engineering Structures, 171, 421-432. https://doi.org/10.1016/j.engstruct.2018.05.106 |
[14] | 张小娜, 王国立. 聚丙烯纤维掺量影响卵石混凝土力学性能的研究[J]. 四川建筑科学研究, 2016, 42(4): 106-108. |
[15] | 任莉莉, 朱安标, 王学志, 等. 纤维掺量及混杂比对钢-聚丙烯混杂纤维高强混凝土力学性能影响研究[J]. 混凝土, 2016(8): 63-66, 70. |
[16] | Merhe, J., Cheng, L.L. and Feng, D.C. (2011) Polypropylene Fiber Reinforced Concrete for Rigid Airfield Pavement. Advanced Materials Research, 228-229, 627-633. https://doi.org/10.4028/www.scientific.net/AMR.228-229.627 |
[17] | 周继凯, 毕枫桐, 沈超, 等. 不同掺量聚丙烯纤维混凝土力学性能试验研究[J]. 混凝土, 2015(11): 23-26. |
[18] | ACI Committee 544 (1996) 1R-96, State-of-the-Art Report on Fiber Reinforced Concrete. |
[19] | 韩凯. 多尺度纤维增强水泥基材料的性能及机理研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2021: 40-41. |
[20] | 何文昌. 钢纤维再生混凝土抗冲击性能研究[D]: [硕士学位论文]. 锦州: 辽宁工业大学, 2020: 42, 59-60, 67-68. |
[21] | 李茂, 岳燕飞, 钱觉时, 等. 钢纤维增强磷酸镁水泥混凝土力学性能研究[J/OL]. 武汉大学学报(工学版), 2022, 55(7): 691-698. http://kns.cnki.net/kcms/detail/42.1675.T.20211118.1001.002.html |
[22] | 靳哲鑫. 钢-聚丙烯混杂纤维轻骨料混凝土力学性能和耐久性能试验研究[D]: [硕士学位论文]. 武汉: 武汉工程大学, 2018: 41. |
[23] | 王成启, 吴科如. 不同几何尺寸纤维混杂混凝土的混杂效应[J]. 建筑材料学报, 2005, 8(3): 250-255. |
[24] | 刘冬, 黄真, 伏俊杰, 等. 不同几何尺寸及弹性模量混合纤维混凝土力学性能试验研究与机理分析[J]. 混凝土与水泥制品, 2010(1): 37-44. |
[25] | 王璞, 黄真, 周岱, 等. 碳纤维混杂纤维混凝土抗冲击性能研究[J]. 振动与冲击, 2012, 31(12): 14-18. |
[26] | 李悦, 何赫赫. 聚合物改性水泥砂浆的研究进展[J]. 功能材料, 2016, 47(7): 7038-7045. |