|
Applied Physics 2022
漆层下钢材腐蚀红外图像特征提取算法对比研究
|
Abstract:
防腐漆层下材料腐蚀是对钢材性能和钢结构健康的一大挑战。本文对基于涡流脉冲热成像技术的涂层下钢材腐蚀无损检测与评估技术展开研究,提出温度偏度提取方法,并将其与主成分分析、相位分析和峰度特征提取等方法进行对比,用于漆层下钢材腐蚀的表征和评估。对于早期腐蚀,平均偏度显示出比第二主成分及相位特征更好的灵敏度;然而,归一化的第二主成分具有更大的检测范围,可以识别0~10个月的腐蚀。腐蚀区域温度变化分析表明,电导率对早期腐蚀感应加热和热分布起主导作用。但是长期腐蚀(10个月以上)对焦耳热的分布和耗散影响机制复杂,上述方法均不能很好地识别和评估腐蚀状态。
Paint coated steel corrosion is a big challenge to steel performance and structure health. This paper investigates the nondestructive testing and evaluation based on eddy current pulsed thermography (ECPT) technique for paint coated steel corrosion. Temperature skewness is proposed and compared with principal component analysis (PCA), phase analysis, and kurtosis feature extraction methods, which are applied for paint coated corrosion characterization and evaluation. For early stage corrosion, the averaged skewness shows better sensitivity than the 2nd principal component (2nd PC) and phase analysis performance. However, the normalized 2nd PC presents good sensitivity and the best measurement scale of 0 to 10 months of corrosion. The temperature variation analysis indicates that the electrical conductivity dominates the induced heating and heat distribution for early stage corrosion. For long-time corrosion, more than 10 months, the mechanism of the influence on Joule heat distribution and emission is so complex that the proposed approaches can not identify and evaluate the corrosion state.
[1] | Morcillo, M., Díaz, I., Cano, H., Chico, B. and de la Fuente, D. (2019) Atmospheric Corrosion of Weathering Steels. Overview for Engineers. Part I: Basic Concepts. Construction and Building Materials, 213, 723-737.
https://doi.org/10.1016/j.conbuildmat.2019.03.334 |
[2] | Morcillo, M., Díaz, I., Cano, H., Chico, B. and de la Fuente, D. (2019) Atmospheric Corrosion of Weathering Steels. Overview for Engineers. Part II: Testing, Inspection, Maintenance. Construction and Building Materials, 222, 750-765.
https://doi.org/10.1016/j.conbuildmat.2019.06.155 |
[3] | Bardin, I.V., Bautin, V.A., Gudoshnikov, S.A., Lju-bimov, B.Ya. and Usov, N.A. (2015) Measurement of Weak Magnetic Field of Corrosion Current of Isolated Cor-rosion Center. AIP Advances, 5, Article ID: 017143.
https://doi.org/10.1063/1.4907044 |
[4] | Zou, F. and Cegla, F.B. (2018) On Quantitative Corrosion Rate Mon-itoring with Ultrasound. Journal of Electroanalytical Chemistry, 812, 115-121. https://doi.org/10.1016/j.jelechem.2018.02.005 |
[5] | Hattori, M., Nishikata, A. and Tsuru, T. (2010) EIS Study on Degradation of Polymer-Coated Steel under Ultraviolet Radiation. Corrosion Science, 52, 2080-2087. https://doi.org/10.1016/j.corsci.2010.01.038 |
[6] | Hren, M., Kosec, T. and Legat, A. (2019) Characterization of Stainless Steel Corrosion Processes in Mortar Using Various Monitoring Techniques. Construction and Building Materials, 221, 604-613.
https://doi.org/10.1016/j.conbuildmat.2019.06.120 |
[7] | Li, K., Tian, G.Y., Cheng, L., Yin, A., Cao, W. and Crichton, S. (2014) State Detection of Bond Wires in IGBT Modules Using Eddy Current Pulsed Thermography. IEEE Transactions on Power Electronics, 29, 5000-5009.
https://doi.org/10.1109/TPEL.2013.2288334 |
[8] | Yang, R.Z. and He, Y.Z. (2015) Eddy Current Pulsed Phase Thermography Considering Volumetric Induction Heating for Delamination Evaluation in Carbon Fiber Reinforced Polymers. Applied Physics Letters, 106, Article ID: 234103.
https://doi.org/10.1063/1.4922524 |
[9] | Bai, L.B., Cheng, Y.H., Chen, Y.F., Yang, F., Yin, C., Huang, X.G. and Zhou, X.D. (2016) ICA Fusion Approach Based on Fuzzy Using in Eddy Current Pulsed Thermography. Interna-tional Journal of Applied Electromagnetics and Mechanics, 52, 443-451. https://doi.org/10.3233/JAE-162045 |
[10] | Li, H.C., Yu, Y.T., Li, L.F. and Liu, B. (2019) A Weighted Estimation Algorithm for Enhancing Pulsed Eddy Current Infrared Image in Ecpt Non-Destructive Testing. Applied Sciences, 9, Article No. 4199.
https://doi.org/10.3390/app9204199 |
[11] | Pan, M., He, Y.Z., Tian, G.Y., Chen, D.X. and Luo, F.L. (2012) Defect Characterisation Using Pulsed Eddy Current Thermography under Transmission Mode and NDT Applications. NDT and E International, 52, 28-36.
https://doi.org/10.1016/j.ndteint.2012.08.007 |
[12] | Gotoh, Y., Hirano, H., Nakano, M., Fujiwara, K. and Takahashi, N. (2005) Electromagnetic Nondestructive Testing of Rust Region in Steel. IEEE Transaction on Mag-netics, 41, 3616-3618. https://doi.org/10.1109/TMAG.2005.855174 |
[13] | He, Y.Z., Tian, G.Y., Pan, M.C., Chen, D.X. and Zhang, H. (2014) An Investigation into Eddy Current Pulsed Thermography for Detection of Cor-rosion Blister. Corrosion Science, 78, 1-6. https://doi.org/10.1016/j.corsci.2013.09.001 |
[14] | Yang, R.Z., He, Y.Z., Zhang, H. and Huang, S.D. (2018) Through Coating Imaging and Nondestructive Visualization Evaluation of Early Marine Corrosion Using Electromagnetic Induction Thermography. Ocean Engineering, 147, 277-288. https://doi.org/10.1016/j.oceaneng.2017.09.023 |
[15] | Zhang, H., Yang, R.Z., He, Y.Z., Foudazi, A., Cheng, L. and Tian, G.Y. (2017) A Review of Microwave Thermography Nondestructive Testing and Evaluation. Sensors, 17, Article No. 1123. https://doi.org/10.3390/s17051123 |
[16] | Zhu, J.Z., Withers, P.J., Wu, J.B., Liu, F., Yi, Q.J., Wang, Z.J. and Tian, G.Y. (2020) Characterization of Rolling Contact Fatigue Cracks in Rails by Eddy Current Pulsed Thermography. IEEE Transactions on Industrial Informatics, 17, 2307-2315. https://doi.org/10.1109/TII.2020.3003335 |
[17] | Wang, Z.J., Zhu, J.Z., Tian, G.Y. and Ciampa, F. (2019) Comparative Analysis of Eddy Current Pulsed Thermography and Long Pulse Thermography for Damage Detection in Metals and Composites. NDT and E International, 107, Article ID: 102155. https://doi.org/10.1016/j.ndteint.2019.102155 |
[18] | Yin, A.J., Gao, B., Tian, G.Y., Woo, W.L. and Li, K.J. (2013) Physical Interpretation and Separation of Eddy Current Pulsed Thermography. Journal of Applied Physics, 113, Article ID: 064101. https://doi.org/10.1063/1.4790866 |
[19] | Xiong, Y.B., Ye, C., Zheng, M.Q. and Shi, J. (2018) Computed Method and Validation of Thermal Conductivity of Austenitic Stainless Steel in Cryogenic Temperature Range. Cryogenics & Superconductivity, 46, 19-23. |
[20] | Takeda, M., Onishi, T., Nakakubo, S. and Fujimoto, S. (2009) Physical Properties of Iron-Oxide Scales on Si-Containing Steels at High Temperature. Materials Transactions, 50, 2242-2246. https://doi.org/10.2320/matertrans.M2009097 |
[21] | He, Y.Z., Tian, G.Y., Zhang, H., Alamin, M., Simm, A. and Jackson, P. (2012) Steel Corrosion Characterization Using Pulsed Eddy Current Systems. IEEE Sensors Journal, 12, 2113-2120. https://doi.org/10.1109/JSEN.2012.2184280 |
[22] | Johnathan, H., Quentin, F., Khanh, V. and Seetha, R. (2022) Detection of Corrosion under Insulation on Aerospace Structures via Pulsed Eddy Current Thermography. Aerospace Science and Technology, 121, Article ID: 107317.
https://doi.org/10.1016/j.ast.2021.107317 |
[23] | Harvey, C. and Siddique, A.R. (1999) Autoregressive Condi-tional Skewness. Journal of Financial and Quantitative Analysis, 34, 465-487. https://doi.org/10.2307/2676230 |
[24] | Guskos, N., Papadopoulos, G.J., Likodimos, V., et al. (2002) Photoa-coustic, EPR and Electrical Conductivity Investigations of Three Synthetic Mineral Pigments: Hematite, Goethite and Magnetite. Materials Research Bulletin, 37, 1051-1061. https://doi.org/10.1016/S0025-5408(02)00742-0 |
[25] | Liu, X.L., Tian, G.Y., Yu, C. and Luo, H.Z. (2020) Non-Contact Degradation Evaluation for GBT Modules Using Eddy Current Pulsed Thermography Approach. En-ergies, 13, Article No. 2613. https://doi.org/10.3390/en13102613 |