全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

TiO2电子传输层在钙钛矿太阳能电池中的应用进展
Application Progress of TiO2 Electron Transport Layer in Perovskite Solar Cells

DOI: 10.12677/APP.2022.1211066, PP. 561-568

Keywords: 钙钛矿太阳能电池,TiO2电子传输层,光电转换效率
Perovskite Solar Cell
, TiO2 Electron Transport Layer, Photoelectric Conversion Efficiency

Full-Text   Cite this paper   Add to My Lib

Abstract:

钙钛矿太阳能电池具有成本便宜、器件效率高、制备工艺相对简单等优势受到人们的广泛关注。电子传输层是钙钛矿太阳能的重要结构,在整个电池里要起到输送电子并把空穴阻隔在传输层以外的作用。TiO2具有与钙钛矿材料最低未占分子轨道能级相适应的导带底(?4.1 eV),和比较宽的带隙大约3 eV,有益于电子的选择性传输,因此作为电子传输层材料,在钙钛矿太阳能电池中应用非常广泛。本文简要介绍了TiO2电子传输层的结构、性质和制备方法,重点分析了目前提高TiO2电子传输层材料性能的主要方法:形貌调控、掺杂和界面修饰,通过这些方法对TiO2电子传输层进行调控,并在不同程度上使电池的光电转换效率得到提升。希望研究结果能够为制备出性能优异的TiO2电子传输层提供一定的参考。
Perovskite solar cells have attracted extensive attention due to their low cost, high device efficiency, and relatively simple preparation process. The electron transport layer is an important structure of perovskite solar energy, which plays the role of transporting electrons and blocking holes outside the transport layer in the whole cell. TiO2 has a conduction band bottom (?4.1 ev) corresponding to the lowest unoccupied molecular orbital energy level of perovskite materials, and a relatively wide band gap of about 3 eV, which is beneficial to the selective transmission of electrons. Therefore, as an electron transport layer material, TiO2 is widely used in perovskite solar cells. In this paper, the structure, properties and preparation methods of TiO2 electron transport layer were briefly introduced. The main methods to improve the properties of TiO2 electron transport layer materials were analyzed, including morphology control, doping and interface modification. Through these methods, the TiO2 electron transport layer is regulated, and the photoelectric conversion efficiency of the battery is improved to varying degrees. The research results are expected to provide some reference value for the preparation of TiO2 electron transport layer with excellent performance.

References

[1]  李春海. 基于TiO2电子传输层的钙钛矿太阳能电池的研究[D]: [博士学位论文]. 北京: 北京交通大学, 2019.
[2]  邹宇, 孙伟海, 李昭, 等. NaTFSI界面修饰对平面TiO2基钙钛矿太阳能电池的影响[J]. 发光学报, 2021, 42(5): 682-690.
[3]  吴亭亭. 钙钛矿和氧化亚铜太阳能电池用TiO2电子传输层的构建与性能研究[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2019.
[4]  Roelofs, K.E., Pool, V.L., Bent, S.F., et al. (2016) Impact of Conformality and Crystallinity for Ultrathin 4 nm Compact TiO2 Layers in Perovskite Solar Cells. Advanced Materials Interfaces, 3, 7-8.
https://doi.org/10.1002/admi.201600580
[5]  Kim, H.S., Lee, J.W., Park, N.G., et al. (2013) High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensi-tizer. Nano Letter, 13, 2412-2417.
https://doi.org/10.1021/nl400286w
[6]  Mail, S.S., Betty, C., Charles, S., et al. (2017) Synthesis of a Nanostructured Rutile TiO2 Electron Transporting Layer via an Etching Process for Efficient Perovskite Solar Cells: Impact of the Structural and Crystalline Properties of TiO2. Journal of Materials Chemistry A, 5, 12340-12353.
https://doi.org/10.1039/C7TA02822A
[7]  Chen, D.H., Cheng, Y.B., Caruso, R.A., et al. (2015) Thin Films of Dendritic Anatase Titania Nanowires Enable Effective Hole-Blocking and Efficient Light-Harvesting for High-Performance Mesoscopic Perovskite Solar Cells. Advanced Functional Materials, 25, 3264-3272.
https://doi.org/10.1002/adfm.201500616
[8]  Sun, J.S., Pascoe, A.R., Meyer, S., et al. (2019) Ultrasonic Spray Deposition of TiO2 Electron Transport Layers for Reproducible and High Efficiency Hybrid Perovskite Solar Cells. Solar Energy, 188, 697-705.
https://doi.org/10.1016/j.solener.2019.06.045
[9]  Hayali, A. and Alkaisi, M.M. (2021) High Efficiency Per-ovskite Solar Cells Using DC Sputtered Compact TiO2 Electron Transport Layer. European Physical Jour-nal—Photovoltaics, 12, 8.
https://doi.org/10.1051/epjpv/2021008
[10]  Lu, H., Gu, B., Fang, S., et al. (2021) In Situ Growth of an Opal-Like TiO2 Electron Transport Layer by Atomic Layer Deposition for Perovskite Solar Cells. Sustainable Energy & Fuels, 5, 880-885.
https://doi.org/10.1039/D0SE01558J
[11]  Zhang, X.Q., Wu, Y.P., Shen, S., et al. (2016) Reduction of Oxygen Vacancy and Enhanced Efficiency of Perovskite Solar Cell by Doping Fluorine into TiO2. Journal of Alloys and Compounds, 681, 191-196.
https://doi.org/10.1016/j.jallcom.2016.04.194
[12]  Yan, Y, Liu, C., Yang, Y., et al. (2021) Fundamental Flaw in the Current Construction of the TiO2 Electron Transport Layer of Perovskite Solar Cells and Its Elimination. ACS Applied Materials & Interfaces, 13, 39371-39378.
https://doi.org/10.1021/acsami.1c09742
[13]  Chen, B.X., Rao, H.S., Kuang, D.B., et al. (2016) Achieving High-Performance Planar Perovskite Solar Cell with Nb-Doped TiO2 Compact Layer by Enhanced Electron Injection and Efficient Charge Extraction. Journal of Materials Chemistry A, 4, 5647-5653.
https://doi.org/10.1039/C6TA00989A
[14]  Cai, Q.B., Zhang, Y.Q., Shao, G.S., et al. (2018) Enhancing Effi-ciency of Planar Structure Perovskite Solar Cells Using Sn-Doped TiO2 as Electron Transport Layer at Low Tem-perature. Electrochimica Acta, 261, 227-235.
https://doi.org/10.1016/j.electacta.2017.12.108
[15]  Ma, F., Ziffer, M.E., Ginger, D.S., et al. (2015) Zr In-corporation into TiO2 Electrodes Reduces Hhysteresis and iImproves Performance in Hybrid Perovskite Solar Cells While Increasing Carrier Lifetimes. The Journal of Physical Chemistry Letters, 6, 669-675.
https://doi.org/10.1021/jz502694g
[16]  Heo, J.H., You, M.S., Im, S.H., et al. (2015) Hysteresis-Less Mesoscopic CH3NH3PbI3 Perovskite Hybrid Solar Cells by Introduction of Li-Treated TiO2 Electrode. Nano Energy, 15, 530-539.
https://doi.org/10.1016/j.nanoen.2015.05.014
[17]  李杭倩. 改进两步法制备基于TiO2的钙钛矿太阳能电池性能研究[D]: [硕士学位论文]. 成都: 电子科技大学, 2016.
[18]  Tao, C., Neutzner, S., Annamaria, P., et al. (2015) 17.6% Stabilized Efficiency in Low-Temperature Processed Planar Perovskite Solar Cells. Energy & Environmental Science, 8, 2365-2370.
https://doi.org/10.1039/C5EE01720C
[19]  Zhu, Z.L., Ma, J.N., Yang, S.H., et al. (2014) Efficiency Enhancement of Perovskite Solar Cells through Fast Electron: The Role of Grapheme Quantum Dots. Journal of the American Chemical Society, 136, 3760-3763.
https://doi.org/10.1021/ja4132246
[20]  Li, H., Shi, W.N., Yang, Y., et al. (2017) Carbon Quantum Dots/TiOX Electron Transport Layer Boosts Efficiency of Planar Heterojunction Perovskite Solar Cells to 19%. Nano Letter, 17, 2328-2335.
https://doi.org/10.1021/acs.nanolett.6b05177
[21]  Tan, H.R., Jain, A., Sargent, E.H., et al. (2017) Efficient and Stable Solution-Processed Planar Perovskite Solar Cells via Contact Passivation. Science, 355, 722-726.
https://doi.org/10.1126/science.aai9081
[22]  Mali, S.S., Shim, C.S., Hong, C.K., et al. (2015) Ultrathin Atomic Layer Deposited TiO2 for Surface Passivation of Hydrothermally Grown 1D TiO2 Nanorod Arrays for Efficient Solid-State Perovskite Solar Cells. Chemistry of Materials, 27, 1541-1551.
https://doi.org/10.1021/cm504558g
[23]  Lee, Y.H., Paek, S., Nazeeruddin, M.K., et al. (2017) Enhanced Charge Collection with Passivation of the Tin Oxide Layer in Planar Perovskite Solar Cells. Journal of Materials Chemistry A, 5, 12729-12734.
https://doi.org/10.1039/C7TA04128D
[24]  Song, S., Kang, G., Chi, J., et al. (2017) Systematicall Optimized Bilayered Electron Transport Layer for Highly Efficient Planar Perovskite Solar Cells (n = 21.1%). ACS Energy Letters, 2, 2667-2673.
https://doi.org/10.1021/acsenergylett.7b00888
[25]  Zhang, X.Z., Zhang, W.N., Wu, T.Y., et al. (2019) High Efficiency and Negligible Hysteresis Planar Perovskite Solar Cells Based on NiO Nanocrystals Modified TiO2 Electron Transport Layers. Solar Energy, 181, 293-300.
https://doi.org/10.1016/j.solener.2019.02.011
[26]  Zhou, J., Lyu, M., Zhu, J., et al. (2022) SnO2 Quantum Dot-Modified Mesoporous TiO2 Electron Transport Layer for Efficient and Stable Perovskite Solar Cells. ACS Ap-plied Energy Materials, 5, 3052-3063.
https://doi.org/10.1021/acsaem.1c03681
[27]  Valerio, Z., Francesco, D.G., Herbert, L., et al. (2018) Surface Fluorination of ALD TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells. Advanced Materials Interfaces, 5, Article ID: 1701456.
https://doi.org/10.1002/admi.201701456
[28]  Wang, J.L., Zhou, X.J., Ni, J., et al. (2021) High-Performance Perovskite Solar Cell Based on Mesoporous TiO2 Electron Transport Layer Enabled by Composite Treatment Strategy. Journal of Materials Science: Materials in Electronics, 32, 28417-28425.
https://doi.org/10.1007/s10854-021-07221-6
[29]  Wang, B.J., Yang, J.M., Lu, L.Y., et al. (2020) Interface Engineering of Air-Stable n-Doping Fullerene Modified TiO2 Electron Transport Layer for Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 7, Article ID: 1901964.
https://doi.org/10.1002/admi.201901964
[30]  王传坤, 吴正雪, 唐颖, 等. 钙钛矿太阳能电池中TiO2材料制备及应用进展[J]. 化工新型材料, 2020, 48(1): 41-44.
[31]  Mallela, M.S., Tsai, J.H., Huang, J.Z., et al. (2022) Dielectric Barrier Discharge Jet Processed TiO2 Nanoparticle Layer for Flexible Perovskite Solar Cells. Journal of Physics, D Applied Physics: A Europhysics Journal, 55, Article ID: 034003.
https://doi.org/10.1088/1361-6463/ac2bcd

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133