全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

深埋隧道台阶法施工围岩压力拱的变化规律
Regulation of Pressure Arch around Deep Buried Tunnel during Construction with Steps Method

DOI: 10.12677/HJCE.2022.1111130, PP. 1170-1176

Keywords: 隧道压力拱,台阶法,应力分布,台阶高度,最大应力
Tunnel Pressure Arch
, Step Method, Stress Distribution, Height of Step, Maximum Stress

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过分析隧道台阶法施工过程中围岩应力重分布的规律,研究压力拱的动态变化,得出:两台阶法临时和最终上部压力拱的厚度均较相应侧压力拱大,但坐标轴上最大应力相对增量均相应较小;两台阶法临时上部压力拱向隧道壁移动而临时侧压力拱远离隧道壁移动形成相应最终压力拱,而最终压力拱厚度和坐标轴上最大应力均较大;两台阶法中随上台阶高度的增大,临时上部压力拱逐渐向隧道壁移动并趋于稳定,而临时侧压力拱逐渐远离隧道壁并趋于稳定,临时压力拱厚度均先增大后趋于稳定,坐标轴上最大应力均逐渐增大;台阶数量不影响最终压力拱。
Through analysis of stress redistribution of surrounding rock during the tunnel construction process step, the dynamic changes of tunnel pressure arch were studied. The conclusions were gotten: in the two process steps the thickness of the temporary and final upper pressure arch is larger than that of the side pressure arch, but the maximum stress on the coordinate axis is relatively smaller, the temporary upper pressure arch moves to the tunnel and the temporary side pressure arch moves away from the tunnel to form the corresponding final pressure arch, and the final pressure arch thickness and the maximum stress on the coordinate axis are larger, with the increase of the height of the upper step, the temporary upper pressure arch gradually moves away from tunnel and stabilized, the temporary side pressure arch gradually moves away from the tunnel and stabilized, the thickness of temporary pressure arch is increased and then stabilized, the maximum stress on the coordinate axis increases; the step quantities do not affect the final pressure arch.

References

[1]  陈秋南, 包太, 徐泽沛. 隧道工程[M]. 北京: 机械工业出版社, 2007.
[2]  蔡美峰, 何满朝, 刘东燕. 岩石力学与工程[M]. 北京: 科学出版社, 2002.
[3]  关宝树. 隧道工程施工要点集[M]. 北京: 人民交通出版社, 2003.
[4]  陶星. 隧道开挖释放荷载的有限元模拟方法研究[J]. 四川建筑, 2012, 32(6): 67-68.
[5]  杨昌民, 李飞, 张汉超, 雷保军. 某高速公路隧道分步开挖数值模拟[J]. 公路交通科技(应用技术版), 2013(4): 167-168.
[6]  蔡美峰. 深部开采围岩稳定性与岩层控制关键理论和技术[J]. 采矿与岩层控制工程学报, 2020, 2(3): 5-13.
[7]  苏子龙, 孔强. 金家楼隧道施工过程的数值模拟分析[J]. 山西建筑, 2022, 48(20): 156-158.
[8]  言志信, 史盛, 江平, 等. 某砂岩隧道在开挖过程中变形的数值模拟研究[J]. 防灾减灾工程学报, 2013(6): 631-636.
[9]  冯忠居, 朱登远, 彭小兵, 等. 泥岩隧道施工技术对围岩的影响及其数值模拟分析[J]. 公路, 2013, 58(12): 224-229.
[10]  何栋梁, 成彦惠, 方建勤, 柳群义. 考虑时空效应的隧道围岩变形分析[J]. 公路交通科技, 2016, 33(7): 91-95.
[11]  安永林, 李佳豪, 刘文娟, 周进, 谭格宇. 隧道压力拱边界统一判定方法及其空间演化特征[J]. 中国安全科学学报, 2022, 32(8): 84-90.
[12]  Lee, C.J., Wu, B.R., Chen, H.T. and Chiang, K.H. (2006) Tunnel Stability and Arching Effects during Tunneling in Soft Clayey Soil. Tunneling and Underground Space Technology, 21, 119-132.
https://doi.org/10.1016/j.tust.2005.06.003
[13]  张佩, 刘泽昊, 齐吉琳, 杜修力. 卵石倾角对砂卵石地层隧道开挖影响的细观力学研究[J]. 工程力学, 2022, 39(10): 48-60.
[14]  瞿东明, 侯明章, 吴科亮, 张亚龙. 深埋大断面隧道开挖施工方案比选分析[J]. 公路交通科技(应用技术版), 2015, 11(11): 206-209.
[15]  徐泽沛. 隧道压力拱细观机理及影响因素研究[D]: [博士学位论文]. 长沙: 中南大学, 2014.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133