All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Relative Articles


Research Progress of High Entropy Catalysts for Oxygen Evolution Reaction

DOI: 10.12677/NAT.2022.124030, PP. 296-303

Keywords: 高熵材料,电解水,析氧反应,催化剂
High Entropy Materials
, Electrolytic Water, Oxygen Evolution Reaction, Catalyst

Full-Text   Cite this paper   Add to My Lib


High entropy materials are a new kind of multi-principal component materials composed of many elements in equal or near equal molar ratio, including high entropy alloys and a series of high entropy compounds, such as high entropy oxides and hydroxides, high entropy phosphates, high entropy sulfides, high entropy glycine salts, etc. High entropy materials have disordered components, wide adjustability, and spe-cial physical and chemical properties. They have the potential to become high-efficiency oxygen evolution catalysts, and may become a new type of electrolytic water oxygen evolution reaction cat-alyst, which can replace the traditional metal oxides and standard noble metal-based catalysts for catalytic electrolytic water oxygen evolution reaction. In this paper, the research progress of high entropy materials in oxygen evolution reaction catalysts in recent years is summarized, and the development trend and application prospect of high entropy materials in hydrogen production from electrolytic water in the future are prospected.


[1]  赵雪莹, 李根蒂, 孙晓彤, 等. “双碳”目标下电解制氢关键技术及其应用进展[J]. 全球能源互联网, 2021, 4(5): 436-446.
[2]  Nafiseh, R. and Brant, A.P. (2020) Characterisation of Tantalum Carbide as a Support for Iridium Based Oxygen Evolution Reaction Catalyst for Polymer Electrolyte Membrane Water Electrolysis. ECS Meeting Abstracts, MA2020-01, 1670.
[3]  L?ffler, T., Ludwig, A., Rossmeisl, J., et al. (2021) What Makes High-Entropy Alloys Exceptional Electrocatalysts? Angewandte Chemie (International ed.), 60, 26894-26903.
[4]  Huang, T.H., et al. (2021) PtAuSn Nanorod Catalysts with a Beneficial Core/Shell Structure for Oxygen Reduction Electrocatalysis. ACS Applied Energy Materials, 4, 3067-3073.
[5]  Hsieh, C.-T., et al. (2020) NiFeMo Alloy Inverse-Opals on Ni Foam as Outstanding Bifunctional Catalysts for Electrolytic Water Splitting of Ultra-Low Cell Voltages at High Current Densities. Applied Catalysis B: Environmental, 267, Article ID: 118376.
[6]  杜英侠, 刘瑞, 鲁望婷, 等. 生物质衍生碳材料电催化裂解水研究进展[J]. 武汉大学学报(理学版), 2022, 68(2): 123-130.
[7]  Zhu, H., Zhu, Z.F., Hao, J.C., et al. (2022) High-Entropy Alloy Stabilized Active Ir for Highly Efficient Acidic Oxygen Evolution. Chemical Engineering Journal, 431, Article ID: 133251.
[8]  Tang, J., Xu, J.L., Ye, Z.G., et al. (2021) Microwave Sintered Porous CoCrFeNiMo High Entropy Alloy as an Efficient Electrocatalyst for Alkaline Oxygen Evo-lution Reaction. Journal of Materials Science & Technology, 79, 171-177.
[9]  Wang, H.Y., et al. (2020) Nanostructured Amorphous Fe29Co27Ni23Si9B12 High-Entropy-Alloy: An Efficient Electrocatalyst for Oxygen Evolution Reaction. Journal of Materi-als Science & Technology, 68, 191-198.
[10]  Zhou, P.F., Liu, D., Chen, Y.Y., et al. (2022) Corrosion Engineering Boosting Bulk Fe50Mn30Co10Cr10 High-Entropy Alloy as High-Efficient Alkaline Oxygen Evolution Reaction Electrocat-alyst. Journal of Materials Science & Technology, 109, 267-275.
[11]  Liu, H., Qin, H.Y., Kang, J.L., et al. (2022) A Freestanding Na-noporous NiCoFeMoMn High-Entropy Alloy as an Efficient Electrocatalyst for Rapid Water Splitting. Chemical Engi-neering Journal, 435, Article ID: 134898.
[12]  Zhao, S.Q., Wu, H.Y., Yin, R., et al. (2021) Preparation and Elec-trocatalytic Properties of (FeCrCoNiAl0.1)Ox High-Entropy Oxide and NiCo-(FeCrCoNiAl0.1)Ox Heterojunction Films. Journal of Alloys and Compounds, 868, Article ID: 159108.
[13]  Liu, F.M., Yu, M., Chen, X., et al. (2022) Defective High-Entropy Rocksalt Oxide with Enhanced Metal-Oxygen Covalency for Electrocatalytic Oxygen Evolution. Chinese Journal of Catalysis, 43, 122-129.
[14]  Wang, Q.Q., Li, J.Q., Li, Y.J., et al. (2022) Non-Noble Met-al-Based Amorphous High-Entropy Oxides as Efficient and Reliable Electrocatalysts for Oxygen Evolution Reaction. Nano Research, 15, 8751-8759.
[15]  Zhang, L.J., Cai, W.W. and Bao, N.Z. (2021) Top-Level Design Strategy to Construct an Advanced High-Entropy Co-Cu-Fe-Mo (Oxy)Hydroxide Electrocatalyst for the Oxygen Evolu-tion Reaction. Advanced Materials (Deerfield Beach, Fla.), 33, Article ID: 2100745.
[16]  Li, M.Z., Xi, X.Y., Wang, H., et al. (2022) A Universal, Green, and Self-Reliant Electrolytic Approach to High-Entropy Layered (Oxy)Hydroxide Nanosheets for Efficient Electrocatalytic Water Oxidation. Journal of Colloid and Interface Science, 617, 500-510.
[17]  Zhao, X.H., Xue, Z.M., Chen, W.J., et al. (2020) Eutectic Synthesis of High-Entropy Metal Phosphides for Electrocatalytic Water Splitting. ChemSusChem, 13, 2038-2042.
[18]  Qiao, H.Y., Wang, X.Z., Dong, Q., et al. (2021) A High-Entropy Phosphate Catalyst for Oxygen Evolution Reaction. Nano Energy, 86, Article ID: 106029.
[19]  Tang, J., Xu, J.L., Ye, Z.G., et al. (2021) Synthesis of Flow-er-Like Cobalt, Nickel Phosphates Grown on the Surface of Porous High Entropy Alloy for Efficient Oxygen Evolution. Journal of Alloys and Compounds, 885, Article ID: 160995.
[20]  Cui, M.J., Yang, C.P., Li, B.Y., et al. (2020) High-Entropy Metal Sulfide Nanoparticles Promise High-Performance Oxygen Evolution Reaction. Advanced Energy Materials, 11, Article ID: 2002887.
[21]  Nguyen, T.X., Su, Y.H., Lin, C.C., et al. (2021) Self-Reconstruction of Sulfate-Containing High Entropy Sulfide for Exceptionally High-Performance Oxygen Evolution Reaction Electrocat-alyst. Advanced Functional Materials, 31, Article ID: 2106229.
[22]  Nguyen, T.X., Su, Y.H., Lin, C.C., et al. (2021) A New High En-tropy Glycerate for High Performance Oxygen Evolution Reaction. Advanced Science, 8, Article ID: 2002446.
[23]  Ting, N.H., Nguyen, T.X., Lee, C.H., et al. (2022) Composi-tion-Controlled High Entropy Metal Glycerate as High-Performance Electrocatalyst for Oxygen Evolution Reaction. Ap-plied Materials Today, 27, Article ID: 101398.


comments powered by Disqus

Contact Us


WhatsApp +8615387084133

WeChat 1538708413