|
新冠病毒Omicron变异株S蛋白变异位点及进化分析
|
Abstract:
新冠病毒Omicron变异株是2021年11月首次在南非发现,并已成为当前传染性最高的主流变异株,其传染性和S蛋白位点变异存在相关性。本文通过生物信息学方法对Omicron变异株的S蛋白变异位点进行分析,并与多种冠状病毒S蛋白进行多序列比对及构建系统进化树。结果显示Omicron变异株S蛋白序列保守性较高,共发现26个变异位点,其中K417N、Q493R、N501Y、Y505H变异位点可能增强病毒感染性。序列比对显示该变异株与Zeta变异株一致性最高,达到98.11%,其次与猫、猴的冠状病毒S蛋白序列一致性皆为98.04%,与Lambda变异株相似性最低,其一致性为97.01%。本研究有助于了解Omicron变异株S蛋白的功能,并为后续筛选靶向药物提供理论依据。
The omicron variant was first detected in South Africa in November 2021 and has become the most prevalent variant, with a correlation with variation in its Spike protein locus. Using bioinformatics methods and software, we analyzed the mutation sites of Spike protein with the Omicron variant and compared it with other coronaviruses to construct the phylogenetic tree. The results showed that the sequence of Spike protein with the Omicron variant is highly conserved. A total of 26 mutation sites have been found in the Spike protein, among which K417N, Q493R, N501Y, and Y505H may enhance virus infectivity. Sequence alignment showed that the omicron variant had the highest identity with the Zeta variant, reaching 98.11%, followed by coronaviruses such as Felinae and Primates, with 98.04% identity. The lowest identity is with the Lambda variant, with an identity of 97.01%. This study will help to understand the function of the Spike protein of the Omicron variant and provide a theoretical basis for further research and screening of new antiviral drug targeting Spike protein.
[1] | 任彪, 廖彬佑, 王建楠, 等. 奥密克戎(Omicron)变异株及其对口腔诊疗的潜在影响[J]. 四川大学学报(医学版), 2022, 53(2): 175-180. |
[2] | WHO (2022) Coronavirus (COVID-19) Dashboard. https://covid19.who.int |
[3] | 吴俣, 刘珏, 刘民, 梁万年. 新型冠状病毒Omicron变异株的流行病学特征及防控研究[J]. 中国全科医学, 2022, 25(1): 14-19. |
[4] | WHO (2021) Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern.
https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern |
[5] | 今冬疫情又起, 但黎明的曙光已不再遥远[EB/OL]. http://www.CRNTT.com, 2022-01-21. |
[6] | 美国专家反驳“疫情终结论”: 奥秘克戎传越广, 下一个变种越早来[EB/OL].
https://new.qq.com/omn/20220118/20220118A0BLND00.html, 2022-01-19. |
[7] | 14秒就能人传人, 钟南山口中“传染性极强”的德尔塔毒株是怎么回事?[EB/OL].
http://finance.sina.com.cn/tech/csj/2021-07-29/doc-ikqciyzk8293182.shtml#~:text, 2021-12-09. |
[8] | Burki, T.K. (2022) Omicron Variant and Booster COVID-19 Vaccines. The Lancet Respiratory Medicine, 10, E17.
https://www.thelancet.com/journals/lanres/article/PIIS2213-2600(21)00559-2 |
[9] | 新冠病毒又双叒变异! 加息进程受阻?[EB/OL].
https://finance.sina.com.cn/money/forex/forexinfo/20211129/docikyakumx0681628.shtm, 2021-11-28. |
[10] | 上海疫情已超52万人感染, 多为奥秘克戎BA.2和BA.2.2 [EB/OL].
https://cj.sina.com.cn/articles/view/1643971635/61fd043300100xa47?finpagefr=p_104, 2022-4-29. |
[11] | 徐本锦, 宣焱, 杜淼, 等. 新冠病毒刺突糖蛋白结构与功能的生物信息学分析及原核表达[J]. 病毒学报, 2022, 38(1): 41-56. |
[12] | 何金娇, 刘洋洋, 毛雪飞, 等. SARS-CoV-2 S蛋白结构与功能的生物信息学分析[J]. 基因组学与应用生物学, 2021, 40(Z1): 2346-2355. |
[13] | 王嘉君. 浅谈Omicron新型冠状病毒变异株的特点和防控措施[J]. 福建轻纺, 2022(2): 33-37. |
[14] | Li, Q., Guan, X., Wu, P., et al. (2020) Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. New England Journal of Medicine, 382, 1199-1207. |
[15] | Huang, C., Wang, Y., Li, X., et al. (2020) Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. The Lancet, 395, 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5 |
[16] | 南非卫生部: 奥密克戎毒株或致新冠二次感染风险增加[EB/OL].
http://www.news.cn/world/2021-12/11/c_1128153618.htm, 2021-12-12. |
[17] | Wrapp, D., Wang, N., Corbett, K.S., et al. (2020) Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. Science, 367, 1260-1263. https://doi.org/10.1126/science.abb2507 |
[18] | Astuti, I. (2020) Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An Overview of Viral Structure and Host Response. Diabetes & Metabolic Syndrome: Clinical Re-search & Reviews, 14, 407-412.
https://doi.org/10.1126/science.abb2507 |
[19] | Kumar, S. and Saxena, S.K. (2021) Structural and Molecular Perspec-tives of SARS-CoV-2. Methods, 195, 23-28.
https://doi.org/10.1016/j.ymeth.2021.03.007 |
[20] | Rodríguez-Maldonado, A.P., Vázquez-Pérez, J.A., Cedro-Tanda, A., et al. (2021) Emergence and Spread of the Potential Variant of Interest (VOI) B.1.1.519 of SARS-CoV-2 Predomi-nantly Present in Mexico. Archives of Virology, 166, 3173-3177. https://doi.org/10.1007/s00705-021-05208-6 |
[21] | Shang, J., Ye, G., Shi, K., et al. (2020) Structural Basis of Re-ceptor Recognition by SARS-CoV-2. Nature, 581, 221-224. https://doi.org/10.1038/s41586-020-2179-y |
[22] | Qin, S., Cui, M., Sun, S., et al. (2021) Genome Characterization and Potential Risk Assessment of the Novel SARS-CoV-2 Variant Omicron (B.1.1.529). Zoonoses, 1, 1-5. https://doi.org/10.15212/ZOONOSES-2021-0024 |
[23] | 穆雪纯, 李丽, 王凌航. 新型冠状病毒流行变异株的分型及研究进展[J]. 国际病毒学杂志, 2021, 28(4): 336-340. |
[24] | Frampton, D., Rampling, T., Cross, A., et al. (2021) Genomic Characteristics and Clinical Effect of the Emergent SARS-CoV-2 B.1.1.7 Lineage in London, UK: A Whole-Genome Sequencing and Hospital-Based Cohort Study. The Lancet Infectious Diseases, 21, 1246-1256. https://doi.org/10.1016/S1473-3099(21)00170-5 |
[25] | Liu, Y., Liu, J., Plante, K.S., et al. (2022) The N501Y Spike Substitution Enhances SARS-CoV-2 Transmission. Nature, 602, 294-299. https://doi.org/10.1038/s41586-021-04245-0 |