Nucleation and Growth of Thallium on Thin Film Mercury Electrode: Voltammetric, Scanning Electron Microscopy, Chronoamperometric and Electrochemical Impedance Studies
Thallium is a heavy metal highly toxic to the biosphere. It can be determined by anodic stripping voltammetry after deposition on mercury film. The aim of this work is to study the conditions and mechanisms of deposition of Hg on glassy carbon electrode and Tl on Hg film by cyclic voltammetry, scanning electron microscopy, chronoamperometry and impedance techniques. The results showed a germination and growth of a 3D Hg phase on glassy carbon electrode. Similarly, the electrodeposition of Tl on Hg follows a 3D three-dimensional nucleation with diffusion controlled growth. The impedance measurements reveal an easier charge transfer on the Tl film.
References
[1]
Krumm, R., Guel, B., Schmitz, C. and Staikov, G. (2000) Nucleation and Growth in Electrodeposition of Metals on n-Si(111). Electrochimica Acta, 45, 3255-3262. https://doi.org/10.1016/S0013-4686(00)00418-7
[2]
Geng, L., Liu, Q., Chen, J., Jia, P., Ye, H., Yan, J., et al. (2021) In Situ Observation of Electrochemical Ostwald Ripening during Sodium Deposition. Nano Research, 15, 2650-2654. https://doi.org/10.1007/s12274-021-3861-6
[3]
Dang, T.K., Van Toan, N., Hung, C.M., Van Duy, N., Viet, N.N., Thong, L.V., et al. (2022) Investigation of Zinc Electronucleation and Growth Mechanisms onto Platinum Electrode from a Deep Eutectic Solvent for Gas Sensing Applications. Journal of Applied Electrochemistry, 52, 299-309. https://doi.org/10.1007/s10800-021-01635-0
[4]
Bahar, J., Lghazi, Y., Youbi, B., Himi, M.A., El Haimer, C., Ouedrhiri, A., et al. (2022) Nucleation and Growth Mechanism of Cuprous Oxide Electrodeposited on ITO Substrate. Materials Today: Proceedings, 66, 187-195. https://doi.org/10.1016/j.matpr.2022.04.445
[5]
Zhong, Q., Qi, J., Liu, J., Wang, J., Lin, K., Ouyang, Q., et al. (2022) Thallium Isotopic Compositions as Tracers in Environmental Studies: A Review. Environment International, 162, Article ID: 107148. https://doi.org/10.1016/j.envint.2022.107148
[6]
Çolak, H. and Mercan, H.İ. (2022) Influence of Thallium Doping on Structural, Electrical, and Optical Properties of ZnO Nanorods for TCO Applications. Journal of Materials Science: Materials in Electronics, 33, 14816-14828. https://doi.org/10.1007/s10854-022-08401-8
[7]
Blain, R. (2022) Thallium. In: Nordberg, G.F. and Costa, M., Eds., Handbook on the Toxicology of Metals, Academic Press, Cambridge, 795-806. https://doi.org/10.1016/B978-0-12-822946-0.00028-3
[8]
Lochab, A., Saxena, M., Jindal, K., Tomar, M., Gupta, V. and Saxena, R. (2021) Thiol-Functionalized Multiwall Carbon Nanotubes for Electrochemical Sensing of Thallium. Materials Chemistry and Physics, 259, Article ID: 124068. https://doi.org/10.1016/j.matchemphys.2020.124068
[9]
Ma, S., Zhao, G., Elsayed, M., Sedki, M., Chen, X., Wu, D., et al. (2021) Toward Rapid Detection of Trace Lead and Cadmium by Anodic Stripping Voltammetry in Complex Wastewater Streams. ACS ES&T Engineering, 1, 1509-1516. https://doi.org/10.1021/acsestengg.1c00161
[10]
Pardi, H., Deswati, D., Edelwis, T.W., Willian, N. and Fitriyah, D. (2021) Differential Pulse Adsorptive Cathodic Stripping Voltammetry for the Simultaneous Determination of Pb and Zn in Seawater Using Calcon. Portugaliae Electrochimica Acta, 39, 45-57. https://doi.org/10.4152/pea.202101045
[11]
Rahm, C.E., Gupta, P., Gupta, V.K., Huseinov, A., Griesmer, B. and Alvarez, N.T. (2022) Impact of Physical and Chemical Parameters on Square Wave Anodic Stripping Voltammetry for Trace Pb2+ Detection in Water. Analyst, 147, 3542-3557. https://doi.org/10.1039/D2AN00724J
[12]
El-Khouly, A.A., Hafez, M.A.H. and Kenawy, I.M.M. (2006) Kinetics and Thermodynamics of the Electrodeposition of Palladium, Thallium, and Tellurium from Different Baths. Russian Journal of Electrochemistry, 42, 225-232. https://doi.org/10.1134/S1023193506030037
[13]
Malik, A.S., Boyko, O., Atkar, N. and Young, W.F. (2001) A Comparative Study of MR Imaging Profile of Titanium Pedicle Screws. Acta Radiologica, 42, 291-293. https://doi.org/10.1080/028418501127346846
[14]
Labayen, M. and Harrington, D.A. (2004) Initial Stages of Thallium Electrodeposition on Iodine-Covered Pt(111). Journal of Electroanalytical Chemistry, 567, 185-192. https://doi.org/10.1016/j.jelechem.2003.12.023
[15]
Abd El-Halim, A.M. and Khalil, R.M. (1984) Electrodeposition of Thallium Powder from Sulphate Baths. Surface Technology, 23, 215-223. https://doi.org/10.1016/0376-4583(84)90014-1
[16]
Liu, J.-F., Wang, S.-X., and Yang, K.-Z. (1997) Electrodeposition and Characterization of Thallium(III) Oxide Films. Thin Solid Films, 298, 156-159. https://doi.org/10.1016/S0040-6090(96)09169-9
[17]
Scharifker, B. (2000) Catalytic Reduction of Nitrate during Electrodeposition of Thallium from Tl3+ Solution. Electrochemistry Communications, 2, 448-451. https://doi.org/10.1016/S1388-2481(00)00052-7
[18]
Momčilović, M.Z. (2022) Recent Innovations in Voltammetric Techniques. In: Manjunatha, J.G., Ed., Electrochemical Sensors Based on Carbon Composite Materials, IOP Publishing, Bristol, 6-1-6-22. https://doi.org/10.1088/978-0-7503-5127-0ch6
[19]
Shao, W., Sun, Y., Xu, Y. and Zangari, G. (2022) Depolarization of Cu Electrodeposition in the Presence of Ag: A Cyclic-Voltammetry Study. Electrochimica Acta, 405, Article ID: 139796. https://doi.org/10.1016/j.electacta.2021.139796
[20]
Jovanovski, V., Xhanari, K. and Finšgar, M. (2022) Editorial: Recent Advances of Metal-Film Electrodes for Trace Electrochemical Analysis. Frontiers in Chemistry, 10, Article ID: 973672. https://doi.org/10.3389/fchem.2022.973672
[21]
Grosser, T., Wehrhold, M., Neubert, T.J. and Balasubramanian, K. (2021). Graphene-Rcury-Aphene Sandwich Electrode for Electroanalysis. ChemElectro-Chem, 8, 4277-4285. https://doi.org/10.1002/celc.202101290
[22]
Sherigara, B.S., Shivaraj, Y., Mascarenhas, R.J. and Satpati, A.K. (2007) Simultaneous Determination of Lead, Copper and Cadmium onto Mercury Film Supported on Wax Impregnated Carbon Paste Electrode: Assessment of Quantification Procedures by Anodic Stripping Voltammetry. Electrochimica Acta, 52, 3137-3142. https://doi.org/10.1016/j.electacta.2006.09.055
[23]
Scharifker, B. and Hills, G. (1983) Theoretical and Experimental Studies of Multiple Nucleation. Electrochimica Acta, 28, 879-889. https://doi.org/10.1016/0013-4686(83)85163-9
[24]
Kim, G.W. and Ha, J.W. (2022) Single-Particle Study on Hg Amalgamation Mechanism and Slow Inward Diffusion in Mesoporous Silica-Coated Gold Nanorods without Structural Deformation. The Journal of Physical Chemistry Letters, 13, 2607-2613. https://doi.org/10.1021/acs.jpclett.2c00189
[25]
Ferrari, A.G.M., Crapnell, R.D., Adarakatti, P.S., Suma, B.P. and Banks, C.E. (2022) Electroanalytical Overview: The Detection of Chromium. Sensors and Actuators Reports, 4, Article ID: 100116. https://doi.org/10.1016/j.snr.2022.100116
[26]
Carboney, A.S., Crespo-Yapur, D.A. and Videa, M. (2022) Mathematical Analysis of Cyclic and Sampled Current Voltammetries for the Description of Nucleation and Growth Processes of Metallic Nanoparticles. ECS Transactions, 106, Article No. 3. https://doi.org/10.1149/10601.0003ecst
[27]
Bahrololoomi, A., Bilan, H.K. and Podlaha, E.J. (2022) Electrodeposited Ni-Fe onto Glassy Carbon for the Detection of Methylene Blue. Journal of the Electrochemical Society, 169, Article ID: 012501. https://doi.org/10.1149/1945-7111/ac429e
[28]
Brett, C.M. (2022) Electrochemical Impedance Spectroscopy in the Characterisation and Application of Modified Electrodes for Electrochemical Sensors and Biosensors. Molecules, 27, Article No. 1497. https://doi.org/10.3390/molecules27051497
[29]
Liu, Y., Xue, Q., Chang, C., Wang, R., Wang, Q. and Shan, X. (2022) Highly Efficient Detection of Cd (II) Ions by a Stannum and Cerium Bimetal-Modified Laser-Induced Graphene Electrode in Water. Chemical Engineering Journal, 433, Article ID: 133791. https://doi.org/10.1016/j.cej.2021.133791
[30]
Maciel, C.C., de S.M. Freitas, A., Medrades, J.P. and Ferreira, M. (2022) Simultaneous Determination of Catechol and Paraquat Using a Flexible Electrode of PBAT and Graphite Modified with Gold Nanoparticles and Copper Phthalocyanine (g-PBAT/AuNP/CuTsPc) LbL Film. Journal of the Electrochemical Society, 169, Article ID: 027505. https://doi.org/10.1149/1945-7111/ac4ff0
[31]
Antherjanam, S. and Saraswathyamma, B. (2022) Simultaneous Electrochemical Determination of Hydrazine and Hydroxylamine on a Thiadiazole Derivative Modified Pencil Graphite Electrode. Materials Chemistry and Physics, 275, Article ID: 125223. https://doi.org/10.1016/j.matchemphys.2021.125223