全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同细胞因子对诱导间充质干细胞在肌腱损伤修复中的研究进展
Research Progress of Different Cytokines on the Induction of Mesenchymal Stem Cells in Tendon Injury Repair

DOI: 10.12677/ACM.2022.12111432, PP. 9929-9938

Keywords: 细胞因子,间充质干细胞,肌腱损伤修复
Cytokines
, Mesenchymal Stem Cells, Tendon Injury Repair

Full-Text   Cite this paper   Add to My Lib

Abstract:

肌腱的损伤在运动和工作场所很常见,它与体育活动、反复微创伤、抑制机制功能障碍、退行性改变以及全身或局部皮质类固醇治疗有关,每年全世界数千万人受到影响,外科手术是肌腱损伤的主要治疗方法。不幸的是,超过90%的患者手术修复后肌腱愈合失败,因此,提高肌腱愈合的方法具有很强的临床意义。利用不同谱系的细胞因子的特性,与间充质干细胞共同作用,促进肌腱损伤的修复,是近年来国内外的研究热点。
Tendon injuries are common in sports and the workplace. It is related to physical activity, repeated microtrauma, dysfunction of inhibitory mechanisms, degenerative changes, and systemic or local corticosteroid treatment. Tens of millions of people are affected worldwide every year. Surgery is the main treatment for tendon injury. Unfortunately, tendon healing fails after surgical repair in more than 90% of patients; therefore, methods to improve tendon healing are of strong clinical in-terest. In recent years, the characteristics of cytokines of different lineages and mesenchymal stem cells are used to promote the repair of tendon injury, which is a research hotspot at home and abroad.

References

[1]  张承昊, 李棋, 唐新, 李箭. 促进腱-骨愈合方法的研究进展[J]. 中国修复重建外科杂志, 2015, 29(7): 912-916.
[2]  Jenkins, D.H. and McKibbin, B. (1980) The Role of Flexible Carbon-Fibre Implants as Tendon and Ligament Substitutes in Clinical Practice. A Preliminary Report. The Journal of Bone and Joint Surgery. British, 62-B, 497-499.
https://doi.org/10.1302/0301-620X.62B4.7430232
[3]  蔡荣辉, 刘康. 骨形态发生蛋白12诱导骨髓间充质干细胞构建组织工程肌腱[J]. 中国组织工程研究, 2013, 17(27): 4941-4950.
[4]  Qiu, G., Wang, P., Li, G., Shi, Z., Weir, M.D., Sun, J., Song, Y., Wang, J., Xu, H.H. and Zhao, L. (2016) Minipig-BMSCs Combined with a Self-Setting Calcium Phosphate Paste for Bone Tissue Engineering. Molecular Biotechnology, 58, 748-756.
https://doi.org/10.1007/s12033-016-9974-6
[5]  Murphy, M.B., Moncivais, K. and Caplan, A.I. (2013) Mesen-chymal Stem Cells: Environmentally Responsive Therapeutics for Regenerative Medicine. Experimental & Molecular Medicine, 45, e54.
https://doi.org/10.1038/emm.2013.94
[6]  Teng, C., Zhou, C., Xu, D. and Bi, F. (2016) Combination of Plate-let-Rich Plasma and Bone Marrow Mesenchymal Stem Cells Enhances Tendon-Bone Healing in a Rabbit Model of Ante-rior Cruciate Ligament Reconstruction. Journal of Orthopaedic Surgery and Research, 11, Article No. 96.
https://doi.org/10.1186/s13018-016-0433-7
[7]  Usuelli, F.G., Grassi, M., Maccario, C., Vigano, M., Lanfranchi, L., Alfieri Montrasio, U. and de Girolamo, L. (2018) Intratendinous Adipose-Derived Stromal Vascular Fraction (SVF) Injection Provides a Safe, Efficacious Treatment for Achilles Tendinopathy: Results of a Randomized Controlled Clinical Trial at a 6-Month Follow-Up. Knee Surgery, Sports Traumatology, Arthroscopy, 26, 2000-2010.
https://doi.org/10.1007/s00167-017-4479-9
[8]  Pelled, G., Snedeker, J.G., Ben-Arav, A., Rigozzi, S., Zilberman, Y., Kimelman-Bleich, N., Gazit, Z., Müller, R. and Gazit, D. (2012) Smad8/BMP2-Engineered Mesenchymal Stem Cells Induce Accelerated Recovery of the Biomechanical Properties of the Achilles Tendon. Journal of Orthopaedic Research, 30, 1932-1939.
https://doi.org/10.1002/jor.22167
[9]  王紫横, 任逸众. 不同细胞因子对诱导间充质干细胞向韧带方向分化影响的研究进展[J]. 生物骨科材料与临床研究, 2015, 12(6): 68-71+75.
[10]  Bolt, P., Clerk, A.N., Luu, H.H., Kang, Q., Kummer, J.L., Deng, Z.L., Olson, K., Primus, F., Montag, A.G., He, T.C., et al. (2007) BMP-14 Gene Therapy In-creases Tendon Tensile Strength in a Rat Model of Achilles Tendon Injury. The Journal of Bone & Joint Surgery, 89, 1315-1320.
https://doi.org/10.2106/JBJS.F.00257
[11]  Barsby, T. and Guest, D. (2013) Transforming Growth Factor Beta3 Promotes Tendon Differentiation of Equine Embryo-Derived Stem Cells. Tissue Engineering Part A, 19, 2156-2165.
https://doi.org/10.1089/ten.tea.2012.0372
[12]  Halper, J. (2014) Advances in the Use of Growth Fac-tors for Treatment of Disorders of Soft Tissues. In: Progress in Heritable Soft Connective Tissue Diseases. Advances in Experimental Medicine and Biology, Vol. 802, Springer, Dordrecht, 59-76.
https://doi.org/10.1007/978-94-007-7893-1_5
[13]  Yin, Z., Guo, J., Wu, T.Y., Chen, X., Xu, L.L., Lin, S.E., Sun, Y.X., Chan, K.M., Ouyang, H. and Li, G. (2016) Stepwise Differentiation of Mesenchymal Stem Cells Augments Ten-don-Like Tissue Formation and Defect Repair in Vivo. Stem Cells Translational Medicine, 5, 1106-1116.
https://doi.org/10.5966/sctm.2015-0215
[14]  Halper, J. (2010) Growth Factors as Active Participants in Carcino-genesis: A Perspective. Veterinary Pathology, 47, 77-97.
https://doi.org/10.1177/0300985809352981
[15]  Burch, M.L., Zheng, W. and Little, P.J. (2011) Smad Linker Region Phosphorylation in the Regulation of Extracellular Matrix Synthesis. Cellular and Molecular Life Sciences, 68, 97-107.
https://doi.org/10.1007/s00018-010-0514-4
[16]  Arimura, H., Shukunami, C., Tokunaga, T., Karasugi, T., Oka-moto, N., Taniwaki, T., Sakamoto, H., Mizuta, H. and Hiraki, Y. (2017) TGF-β1 Improves Biomechanical Strength by Extracellular Matrix Accumulation without Increasing the Number of Tenogenic Lineage Cells in a Rat Rotator Cuff Re-pair Model. The American Journal of Sports Medicine, 45, 2394-2404.
https://doi.org/10.1177/0363546517707940
[17]  Theodossiou, S.K., Tokle, J. and Schiele, N.R. (2019) TGFβ2-Induced Tenogenesis Impacts Cadherin and Connexin Cell-Cell Junction Proteins in Mesenchymal Stem Cells. Biochemical and Biophysical Research Communications, 508, 889-893.
https://doi.org/10.1016/j.bbrc.2018.12.023
[18]  Perucca Orfei, C., Viganò, M., Pearson, J.R., Colombini, A., De Luca, P., Ragni, E., Santos-Ruiz, L. and de Girolamo, L. (2019) In Vitro Induction of Tendon-Specific Markers in Ten-don Cells, Adipose- and Bone Marrow-Derived Stem Cells is Dependent on TGFβ3, BMP-12 and Ascorbic Acid Stim-ulation. International Journal of Molecular Sciences, 20, Article No. 149.
https://doi.org/10.3390/ijms20010149
[19]  Melzer, M., Schubert, S., Müller, S.F., Geyer, J., Hagen, A., Niebert, S. and Burk, J. (2021) Rho/ROCK Inhibition Promotes TGF-β3-Induced Tenogenic Differentiation in Mesenchymal Stro-mal Cells. Stem Cells International, 2021, Article ID: 8284690.
https://doi.org/10.1155/2021/8284690
[20]  Walsh, D.W., Godson, C., Brazil, D.P. and Martin, F. (2010) Extracellular BMP-Antagonist Regulation in Development and Disease: Tied up in Knots. Trends in Cell Biology, 20, 244-256.
https://doi.org/10.1016/j.tcb.2010.01.008
[21]  Alexander, S.P., Benson, H.E., Faccenda, E., Pawson, A.J., Shar-man, J.L., Spedding, M., Peters, J.A. and Harmar, A.J. (2013) The Concise Guide to PHARMACOLOGY 2013/14: Catalytic Receptors. British Journal of Pharmacology, 170, 1676-1705.
https://doi.org/10.1111/bph.12449
[22]  Ducy, P. and Karsenty, G. (2000) The Family of Bone Morphogenetic Proteins. Kidney International, 57, 2207-2214.
https://doi.org/10.1046/j.1523-1755.2000.00081.x
[23]  Sakou, T. (1998) Bone Morphogenetic Proteins: From Basic Studies to Clinical Approaches. Bone, 22, 591-603.
https://doi.org/10.1016/S8756-3282(98)00053-2
[24]  Morita, W., Snelling, S.J.B., Wheway, K., Watkins, B., Ap-pleton, L., Murphy, R.J., Carr, A.J. and Dakin, S.G. (2021) Comparison of Cellular Responses to TGF-β1 and BMP-2 between Healthy and Torn Tendons. The American Journal of Sports Medicine, 49, 1892-1903.
https://doi.org/10.1177/03635465211011158
[25]  Constam, D.B. and Robertson, E.J. (1999) Regulation of Bone Morphogenetic Protein Activity by Pro Domains and Proprotein Convertases. Journal of Cell Biology, 144, 139-149.
https://doi.org/10.1083/jcb.144.1.139
[26]  Han, L., Hu, Y.G., Jin, B., Xu, S.C., Zheng, X. and Fang, W.L. (2019) Sustained BMP-2 Release and Platelet Rich Fibrin Synergistically Promote Tendon-Bone Healing after Anterior Cruciate Ligament Reconstruction in Rat. European Review for Medical and Pharmacological Sciences, 23, 8705-8712.
[27]  Kovacevic, D. and Rodeo, S.A. (2008) Biological Augmentation of Rotator Cuff Tendon Repair. Clin-ical Orthopaedics and Related Research, 466, 622-633.
https://doi.org/10.1007/s11999-007-0112-4
[28]  Shen, H., Gelberman, R.H., Silva, M.J., Sakiyama-Elbert, S.E. and Thomopoulos, S. (2013) BMP12 Induces tenogenic Differenti-ation of Adipose-Derived Stromal Cells. PLOS ONE, 8, e77613.
https://doi.org/10.1371/journal.pone.0077613
[29]  Chen, P., Cui, L., Chen, G., You, T., Li, W., Zuo, J., Wang, C., Zhang, W. and Jiang, C. (2019) The Application of BMP-12-Overexpressing Mesenchymal Stem Cells Loaded 3D-Printed PLGA Scaffolds in Rabbit Rotator Cuff Repair. International Journal of Biological Macromolecules, 138, 79-88.
https://doi.org/10.1016/j.ijbiomac.2019.07.041
[30]  Gelberman, R.H., Linderman, S.W., Jayaram, R., Dikina, A.D., Sakiyama-Elbert, S., Alsberg, E., Thomopoulos, S. and Shen, H. (2017) Combined Administration of ASCs and BMP-12 Promotes an M2 Macrophage Phenotype and Enhances Tendon Healing. Clinical Orthopaedics and Related Research, 475, 2318-2331.
https://doi.org/10.1007/s11999-017-5369-7
[31]  Eliasson, P., Fahlgren, A. and Aspenberg, P. (2008) Mechanical Load and BMP Signaling during Tendon Repair: A Role for Follistatin? Clinical Orthopaedics and Related Research, 466, 1592-1597.
https://doi.org/10.1007/s11999-008-0253-0
[32]  尹良军, 罗小辑, 黄伟, 陈亮, 胡宁, 何百成, 罗进勇, 左国伟, 邓忠良. 大鼠肌腱愈合过程中BMP-12、BMP-13和BMP-14基因表达水平的变化[J]. 重庆医学, 2012, 41(15): 1479-1481.
[33]  Lamplot, J.D., Angeline, M., Angeles, J., Beederman, M., Wagner, E., Rastegar, F., Scott, B., Skjong, C., Mass, D., Kang, R., et al. (2014) Distinct Effects of Platelet-Rich Plasma and BMP13 on Rotator Cuff Tendon Injury Healing in a Rat Model. The American Journal of Sports Medicine, 42, 2877-2887.
https://doi.org/10.1177/0363546514547171
[34]  Molloy, T., Wang, Y. and Murrell, G. (2003) The Roles of Growth Factors in Tendon and Ligament Healing. Sports Medicine, 33, 381-394.
https://doi.org/10.2165/00007256-200333050-00004
[35]  Plou?t, J., Schilling, J. and Gospodarowicz, D. (1989) Isolation and Characterization of a Newly Identified Endothelial Cell Mitogen Produced by AtT-20 Cells. The EMBO Journal, 8, 3801-3806.
https://doi.org/10.1002/j.1460-2075.1989.tb08557.x
[36]  Yu, P.J., Ferrari, G., Galloway, A.C., Mignatti, P. and Pintucci, G. (2007) Basic Fibroblast Growth Factor (FGF-2): The High Molecular Weight Forms Come of Age. Journal of Cellular Biochemistry, 100, 1100-1108.
https://doi.org/10.1002/jcb.21116
[37]  Benington, L., Rajan, G., Locher, C. and Lim, L.Y. (2020) Fibroblast Growth Factor 2—A Review of Stabilisation Approaches for Clinical Applications. Pharmaceutics, 12, Article No. 508.
https://doi.org/10.3390/pharmaceutics12060508
[38]  Zhang, J., Liu, Z., Li, Y., You, Q., Yang, J., Jin, Y., Zou, G., Tang, J., Ge, Z. and Liu, Y. (2020) FGF-2-Induced Human Amniotic Mesenchymal Stem Cells Seeded on a Human Acellular Amniotic Membrane Scaffold Accelerated Tendon-to-Bone Healing in a Rabbit Extra-Articular Model. Stem Cells International, 2020, Article ID: 4701476.
https://doi.org/10.1155/2020/4701476
[39]  Cai, T.Y., Zhu, W., Chen, X.S., Zhou, S.Y., Jia, L.S. and Sun, Y.Q. (2013) Fibroblast Growth Factor 2 Induces Mesenchymal Stem Cells to Differentiate into Tenocytes through the MAPK Pathway. Molecular Medicine Reports, 8, 1323-1328.
https://doi.org/10.3892/mmr.2013.1668
[40]  Zhang, J., Yuan, T., Zheng, N., Zhou, Y., Hogan, M.V. and Wang, J.H. (2017) The Combined Use of Kartogenin and Platelet-Rich Plas-ma Promotes Fibrocartilage Formation in the Wounded Rat Achilles Tendon Entheses. Bone & Joint Research, 6, 231-244.
https://doi.org/10.1302/2046-3758.64.BJR-2017-0268.R1
[41]  Chan, B.P., Fu, S., Qin, L., Lee, K., Rolf, C.G. and Chan, K. (2000) Effects of Basic Fibroblast Growth Factor (bFGF) on Early Stages of Tendon Healing: A Rat Patellar Tendon Model. Acta Orthopaedica Scandinavica, 71, 513-518.
https://doi.org/10.1080/000164700317381234
[42]  Kraus, T.M., Imhoff, F.B., Wexel, G., Wolf, A., Hirsch, D., Lenz, L., St?ckle, U., Buchmann, S., Tischer, T., Imhoff, A.B., et al. (2014) Stem Cells and Basic Fibroblast Growth Factor Failed to Improve Tendon Healing: An in Vivo Study Using Lentiviral Gene Transfer in a Rat Model. The Journal of Bone & Joint Surgery, 96, 761-769.
https://doi.org/10.2106/JBJS.L.01794
[43]  Huang, A.H., Watson, S.S., Wang, L., Baker, B.M., Akiyama, H., Brigande, J.V. and Schweitzer, R. (2019) Requirement for Scleraxis in the Recruitment of Mesenchymal Progenitors during Embryonic Tendon Elongation. Development, 146, dev182782.
https://doi.org/10.1242/dev.182782
[44]  Dabrowski, B., Swieszkowski, W., Godlinski, D. and Kurzydlowski, K.J. (2010) Highly Porous Titanium Scaffolds for Orthopaedic Applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 95, 53-61.
https://doi.org/10.1002/jbm.b.31682
[45]  Viganò, M., Lugano, G., Perucca Orfei, C., Menon, A., Ragni, E., Co-lombini, A., De Luca, P., Randelli, P. and de Girolamo, L. (2019) Autologous Microfragmented Adipose Tissue Reduces the Catabolic and Fibrosis Response in an In Vitro Model of Tendon Cell Inflammation. Stem Cells International, 2019, Article ID: 5620286.
https://doi.org/10.1155/2019/5620286
[46]  Mao, W.F., Wu, Y.F., Yang, Q.Q., Zhou, Y.L., Wang, X.T., Liu, P.Y. and Tang, J.B. (2017) Modulation of Digital Flexor Tendon Healing by Vascular Endothelial Growth Factor Gene Transfection in a Chicken Model. Gene Therapy, 24, 234-240.
https://doi.org/10.1038/gt.2017.12
[47]  Kaux, J.F., Janssen, L., Drion, P., Nusgens, B., Libertiaux, V., Pascon, F., Heyeres, A., Hoffmann, A., Lambert, C., Le Goff, C., et al. (2014) Vascular Endothelial Growth Factor-111 (VEGF-111) and Tendon Healing: Preliminary Results in a Rat Model of Tendon Injury. Muscle, Ligaments and Tendons Journal, 4, 24-28.
[48]  Tang, J.B., Wu, Y.F., Cao, Y., Chen, C.H., Zhou, Y.L., Avanessian, B., Shimada, M., Wang, X.T. and Liu, P.Y. (2016) Basic FGF or VEGF Gene Therapy Corrects Insufficiency in the Intrinsic Healing Capacity of Tendons. Scientific Reports, 6, Article No.20643.
https://doi.org/10.1038/srep20643
[49]  Huang, Y., Pan, M., Shu, H., He, B., Zhang, F. and Sun, L. (2020) Vascu-lar Endothelial Growth Factor Enhances Tendon-Bone Healing by Activating Yes-Associated Protein for Angiogenesis Induction and Rotator Cuff Reconstruction in Rats. Journal of Cellular Biochemistry, 121, 2343-2353.
https://doi.org/10.1002/jcb.29457
[50]  Zhang, F., Liu, H., Stile, F., Lei, M.P., Pang, Y., Oswald, T.M., Beck, J., Dorsett-Martin, W. and Lineaweaver, W.C. (2003) Effect of Vascular Endothelial Growth Factor on Rat Achilles Tendon Healing. Plastic and Reconstructive Surgery, 112, 1613-1619.
https://doi.org/10.1097/01.PRS.0000086772.72535.A4
[51]  Okamoto, N., Kushida, T., Oe, K., Umeda, M., Ikeha-ra, S. and Iida, H. (2010) Treating Achilles Tendon Rupture in Rats with Bone-Marrow-Cell Transplantation Therapy. The Journal of Bone & Joint Surgery, 92, 2776-2784.
https://doi.org/10.2106/JBJS.I.01325
[52]  Yuksel, S., Gule?, M.A., Gultekin, M.Z, Adan?r, O., Caglar, A., Bey-temur, O., Onur Kü?üky?ld?r?m, B., Avc?, A., Suba??, C., ?nci, ?., et al. (2016) Comparison of the Early Period Effects of Bone Marrow-Derived Mesenchymal Stem Cells and Platelet-Rich Plasma on the Achilles Tendon Ruptures in Rats. Connective Tissue Research, 57, 360-373.
https://doi.org/10.1080/03008207.2016.1189909
[53]  Cui, J., Chen, Z. and Wu, W. (2019) Expression of TGF-β1 and VEGF in Patients with Achilles Tendon Rupture and the Clinical Efficacy. Experimental and Therapeutic Medicine, 18, 3502-3508.
https://doi.org/10.3892/etm.2019.7968
[54]  Yang, Q.Q., Shao, Y.X., Zhang, L.Z. and Zhou, Y.L. (2018) Therapeutic Strategies for Flexor Tendon Healing by Nanoparticle-Mediated Co-Delivery of bFGF and VEGFA Genes. Colloids and Surfaces B: Biointerfaces, 164, 165-176.
https://doi.org/10.1016/j.colsurfb.2018.01.031
[55]  Anitua, E., Sanchez, M., Nurden, A.T., Zalduendo, M., de la Fuente, M., Azofra, J. and Andia, I. (2007) Reciprocal Actions of Platelet-Secreted TGF-β1 on the Production of VEGF and HGF by Human Tendon Cells. Plastic and Reconstructive Surgery, 119, 950-959.
https://doi.org/10.1097/01.prs.0000255543.43695.1d
[56]  Inaba, T., Shimano, H., Gotoda, T., Harada, K., Shimada, M., Ohsuga, J., Watanabe, Y., Kawamura, M., Yazaki, Y., Yamada, N., et al. (1993) Expression of Platelet-Derived Growth Factor β Receptor on Human Monocyte-Derived Macrophages and Effects of Platelet-Derived Growth Factor BB Dimer on the Cellular Function. The Journal of Biological Chemistry, 268, 24353-24360.
https://doi.org/10.1016/S0021-9258(20)80533-X
[57]  Evrova, O. and Buschmann, J. (2017) In Vitro and in Vivo Effects of PDGF-BB Delivery Strategies on Tendon Healing: A Review. European Cells and Materials, 34, 15-39.
https://doi.org/10.22203/eCM.v034a02
[58]  Meier Bürgisser, G., Evrova, O., Calcagni, M., Scalera, C., Giovanoli, P. and Buschmann, J. (2020) Impact of PDGF-BB on Cellular Distribution and Extracellular Matrix in the Healing Rab-bit Achilles Tendon Three Weeks Post-Operation. FEBS Open Bio, 10, 327-337.
https://doi.org/10.1002/2211-5463.12736
[59]  Wang, X.T., Liu, P.Y. and Tang, J.B. (2004) Tendon Healing in Vitro: Genetic Modification of Tenocytes with Exogenous PDGF Gene and Promotion of Collagen Gene Expression. The Journal of Hand Surgery, 29, 884-890.
https://doi.org/10.1016/j.jhsa.2004.05.016
[60]  Tsuzaki, M., Brigman, B.E., Yamamoto, J., Lawrence, W.T., Sim-mons, J.G., Mohapatra, N.K., Lund, P.K., Van Wyk, J., Hannafin, J.A., Bhargava, M.M., et al. (2000) Insulin-Like Growth Factor-I Is Expressed by Avian Flexor Tendon Cells. Journal of Orthopaedic Research, 18, 546-556.
https://doi.org/10.1002/jor.1100180406
[61]  Mazzocca, A.D., McCarthy, M.B., Chowaniec, D., Cote, M.P., Jud-son, C.H., Apostolakos, J., Solovyova, O., Beitzel, K. and Arciero, R.A. (2011) Bone Marrow-Derived Mesenchymal Stem Cells Obtained during Arthroscopic Rotator Cuff Repair Surgery Show Potential for Tendon Cell Differentiation after Treatment with Insulin. Arthroscopy, 27, 1459-1471.
https://doi.org/10.1016/j.arthro.2011.06.029
[62]  Scott, A., Khan, K.M. and Duronio, V. (2005) IGF-I Activates PKB and Prevents Anoxic Apoptosis in Achilles Tendon Cells. Journal of Orthopaedic Research, 23, 1219-1225.
https://doi.org/10.1016/j.orthres.2004.12.011
[63]  Kelley, K.M., Schmidt, K.E., Berg, L., Sak, K., Galima, M.M., Gillespie, C., Balogh, L., Hawayek, A., Reyes, J.A. and Jamison, M. (2002) Comparative Endocrinology of the Insulin-Like Growth Factor-Binding Protein. Journal of Endocrinology, 175, 3-18.
https://doi.org/10.1677/joe.0.1750003
[64]  Platt, M.A. (2005) Tendon Repair and Healing. Clinics in Podia-tric Medicine and Surgery, 22, 553-560.
https://doi.org/10.1016/j.cpm.2005.08.001
[65]  Guess, A.J., Daneault, B., Wang, R., Bradbury, H., La Perle, K.M.D., Fitch, J., Hedrick, S.L., Hamelberg, E., Astbury, C., White, P., et al. (2017) Safety Profile of Good Manufac-turing Practice Manufactured Interferon γ-Primed Mesenchymal Stem/Stromal Cells for Clinical Trials. Stem Cells Translational Medicine, 6, 1868-1879.
https://doi.org/10.1002/sctm.16-0485
[66]  Marques, L.F., Stessuk, T., Camargo, I.C., Sabeh Junior, N., dos Santos, L. and Ribeiro-Paes, J.T. (2015) Platelet-Rich Plasma (PRP): Methodological Aspects and Clinical Applications. Platelets, 26, 101-113.
https://doi.org/10.3109/09537104.2014.881991
[67]  Caliari, S.R. and Harley, B.A. (2011) The Effect of Aniso-tropic Collagen-GAG Scaffolds and Growth Factor Supplementation on Tendon Cell Recruitment, Alignment, and Met-abolic Activity. Biomaterials, 32, 5330-5340.
https://doi.org/10.1016/j.biomaterials.2011.04.021

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133