全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

乳化–溶剂挥发法制备5-氟尿嘧啶聚乳酸微球及其缓释过程的研究
Preparation of 5-Fluorouracil Polylactic Acid Microspheres by Emulsification-Solvent Volatilization Method and Its Sustained Release Process

DOI: 10.12677/HJCET.2022.126047, PP. 365-374

Keywords: 5-氟尿嘧啶聚乳酸,聚乳酸,微球,乳化–溶剂挥发法
5-Fluorouracil Polylactic Acid
, Polylactic Acid, Microspheres, Emulsification-Solvent Volatilization Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:制备尺寸均一的聚乳酸载药微球,考察其对5-氟尿嘧啶的体外缓释效果。方法:通过乳化–溶剂挥发法制备微球,考察因素包括表面活性剂种类、浓度及聚乳酸浓度;采用电子显微镜技术对微球的形态进行表征;利用粒径分析仪对微球粒径完成分析;使用定量分析法,测量药物在体外环境下的缓释曲线。结果:所获得的聚乳酸微球粒径约为(65 ± 12.5) μm;包封率和载药量分别达到85.35%和22.57%,体外模拟缓释曲线证明药物的缓释时间可长达240小时。结论:可为医用药物及缓释控制型聚乳酸载药复合微球的生产提供关键技术和参数支撑。
Objective: Preparation of polylactic acid drug-loaded microspheres with uniform size and inves-tigation of its sustained release effect on 5-fluorouracil in vitro. Methods: Microspheres were prepared by emulsification-solvent volatilization method, and the factors to be investigated included surfactant type, concentration and polylactic acid concentration; the morphology of microspheres was characterized by electron microscopy; the microspheres were analyzed by particle size analyzer. The particle size analysis is completed; using quantitative analysis, the sustained release curve of the drug in the in vitro environment is measured. Results: The particle size of the obtained polylactic acid microspheres was about (65 ± 12.5) μm; and the encapsulation efficiency and drug loading reached 85.35% and 22.57%, respectively. The simulated sustained release curve in vitro proved that the sustained release time of the drug could be as long as 240 hours. Conclusion: It can provide key technology and parameter support for the production of medical drugs and sustained release controlled polylactic acid drug-loaded composite microspheres.

References

[1]  Peyratout, C.S. and Dahne, L. (2004) Tailor-Made Polyelectrolyte Microcapsules: From Multilayers to Smart Con-tainers. Angewandte Chemie International Edition, 43, 3762-3783.
https://doi.org/10.1002/anie.200300568
[2]  Wei, J., Ju, X.-J., Zhou, X.-Y., Xie, R., Wang, W., Liu, Y.-M. and Chu, L.-Y. (2014) Drug Delivery: Multi-Stimuli- Responsive Microcapsules for Adjustable Controlled-Release. Advanced Functional Materials, 24, 3312-3323.
https://doi.org/10.1002/adfm.201303844
[3]  Kromidas, L., Perrier, E., Flanagan, J., Rivero, R. and Bonnet, I. (2006) Release of Antimicrobial Actives from Microcapsules by the Action of Axillary Bacteria. International Journal of Cosmetic Science, 28, 103-108.
https://doi.org/10.1111/j.1467-2494.2006.00283.x
[4]  Song, J. and Chen, H. (2018) Preparation of Aroma Microcapsules with Sodium Alginate and Tetradecyl Diallyl Dimethyl Ammonium Bromide (TADAB) and Its Po-tential Applications in Cosmetics. Flavour and Fragrance Journal, 33, 160-165.
https://doi.org/10.1002/ffj.3411
[5]  Tangsongcharoen, W. and Punyamoonwongsa, P. (2019) High Perfor-mance Biocompatible Cellulose-Based Microcapsules Encapsulating Gallic Acid Prepared by Inverse Microsus-pension Polymerization. Polymer International, 68, 714-723.
https://doi.org/10.1002/pi.5757
[6]  Lomova, M.V., Brichkina, A.I., Kiryukhin, M.V., Vasina, E.N., Pavlov, A.M., Gorin, D.A., Sukhorukov, G.B. and Antipina, M.N. (2015) Multilayer Capsules of Bovine Serum Albumin and Tannic Acid for Controlled Release by Enzymatic Degradation. ACS Applied Materials & Interfaces, 7, 11732-11740.
https://doi.org/10.1021/acsami.5b03263
[7]  Carvalho, I.T., Estevinho, B.N. and Santos, L. (2016) Applica-tion of Microencapsulated Essential Oils in Cosmetic and Personal Healthcare Products—A Review. Journal of Cosmetic Science, 38, 109-119.
https://doi.org/10.1111/ics.12232
[8]  Kozlowska, J. and Kaczmarkiewicz, A. (2019) Collagen Matrices Containing Poly(vinyl alcohol) Microcapsules with Retinyl Palmitate—Structure, Stability, Mechanical and Swelling Properties. Polymer Degradation and Stability, 161, 108-113.
https://doi.org/10.1016/j.polymdegradstab.2019.01.019
[9]  Wu, Y., Shen, J., Larcinese-Hafner, V., Erni, P. and Ouali, L. (2016) Hybrid Microcapsules with Tunable Properties via Pickering Emulsion Templates for the En-capsulation of Bioactive Volatiles. RSC Advances, 6, Article ID: 102595.
https://doi.org/10.1039/C6RA21338C
[10]  Zhou, Y., Han, X., Jing, X. and Chen, Y. (2017) Construction of Silica-Based Micro/Nanoplatforms for Ultrasound Theranostic Biomedicine. Advanced Healthcare Materials, 6, Article ID: 1700646.
https://doi.org/10.1002/adhm.201700646
[11]  Liao, W.-C., Lilienthal, S., Kahn, J.S., Riutin, M., Sohn, Y.S., Nechushtai, R. and Willner, I. (2017) pH- and Ligand-Induced Release of Loads from DNA-Acrylamide Hydrogel Microcapsules. Chemical Society, 8, 3362-3373.
https://doi.org/10.1039/C6SC04770J
[12]  Liao, W.-C., Lu, C.-H., Hartmann, R., Wang, F., Sohn, Y.S., Parak, W.J. and Willner, I. (2015) Adenosine Triphosphate-Triggered Release of Macromolecular and Nanoparticle Loads from Aptamer/DNA-Cross-Linked Microcapsules. ACS Nano, 9, 9078-9086.
https://doi.org/10.1021/acsnano.5b03223
[13]  Park, C.H., Lee, S., Pornnoppadol, G., Nam, Y.S., Kim, S.-H. and Kim, B.J. (2018) Microcapsules Containing pH- Responsive, Fluorescent Polymer-Integrated MoS2: An Effec-tive Platform for in Situ pH Sensing and Photothermal Heating. ACS Applied Materials & Interfaces, 10, 9023-9031.
https://doi.org/10.1021/acsami.7b19468
[14]  Messorn, W., Calvino, C., Natterodt, J.C., Zoppe, J.O. and Weder, C. (2019) Bio-Inspired, Self-Toughening Polymers Enabled by P-Lasticizer-Releasing Microcapsules. Advanced Materials, 31, Article ID: 1807212.
https://doi.org/10.1002/adma.201807212
[15]  Yim, T., Park, M.-S., Woo, S.-G., Lim, S.H., Cho, W., Song, J.H., Han, Y.-K. and Kim, Y.-J. (2015) Self-Extinguishing Lithium Ion Batteries Based on Internally Embedded Fire-Extinguishing Microcapsules with Temperature-Responsiveness. Nano Letters, 15, 5059-5067.
https://doi.org/10.1021/acs.nanolett.5b01167
[16]  Mohanraj, B., Duan, G., Peredo, A., Kim, M., Tu, F., Lee, D., Dodge, G.R. and Mauck, R.L. (2019) Mechanically Activated Micro-Capsules for “On-Demand” Drug Delivery in Dynamically Loaded Musculoskeletal Tissues. Advanced Functional Materials, 29, Article ID: 1807909.
https://doi.org/10.1002/adfm.201807909
[17]  Rajamanickam, R., Baek, S., Gwon, K., Hwang, Y., Shin, K. and Tae, G. (2016) Mechanical Stimuli Responsive and Highly Elastic Biopolymer/Nanoparticle Hybrid Microcapsules for Controlled Release. Journal of Materials Chemistry B, 4, 4278-4286.
https://doi.org/10.1039/C6TB00410E
[18]  Hong, C.-S., Park, J.H., Lee, S., Rhoo, K.Y., Lee, J.T. and Park, S.R. (2018) Fabrication of Protease-Sensitive and Light-Responsive Microcapsules Encompassed with Single Layer of Gold Nanoparticles by Using Self-Assembly Protein of α-Synuclein. ACS Applied Materials & Interfaces, 10, 26628-26640.
https://doi.org/10.1021/acsami.8b07661
[19]  Lasprilla, A.J.R., Martinez, G.A.R., Lunelli, B.H., et al. (2012) Polylatic Acid Syntheis for Application in Biomedical Devices—A View. Biotechnology Advances, 30, 321-328.
https://doi.org/10.1016/j.biotechadv.2011.06.019
[20]  张海龙, 林建华. 乳化溶剂挥发法在微球制备中的应用[J]. 西北药学杂志, 2007, 22(2): 97-98.
[21]  Housaindokht, M.R. and Pour, A.N. (2012) Study the Effect of HLB of Surfactant on Particle Size Distribution of Hematite Nanoparticles Prepared via the Reverse Mi-croemulsion. Solid State Sciences, 14, 622-625.
https://doi.org/10.1016/j.solidstatesciences.2012.01.016
[22]  刘星马, 马丽, 刘燕群, 等. 可生物降解聚乳酸纳米粒的制备与表征[J]. 化学世界, 2003, 44(2): 78-80.
[23]  王哲, 倪宏哲, 张明耀, 等. 聚乳酸微球制备工艺的研究[J]. 高分子材料科学与工程, 2007, 23(6): 207-210.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133