|
基于和声搜索改进的蚁群算法在无人机路径规划中的应用
|
Abstract:
在无人机路径规划中,针对传统蚁群算法收敛速度慢、易陷入局部最优、拐点多等缺点,提出了基于和声搜索改进的蚁群算法。利用和声搜索算法和声扰动的思想,对每一代蚂蚁选择的路径进行扰动处理,保留更优路径,增加算法前期路径选择的多样性,提高收敛速度,减少局部最优。对路径进行平滑处理,删除不必要节点,缩短路径距离,为无人机平衡控制减少风险。仿真实验证明,相比于传统蚁群算法,基于和声搜索改进的蚁群算法收敛速度更快,路径更优,且在较为复杂的栅格环境中,效果更为突出。
In UAV path planning, in order to solve the slow convergence speed and easily falling into local optimization, an improved ant colony algorithm based on harmony search is proposed. Drawing on the idea of the harmony search algorithm, the algorithm performs disturbance processing on the paths selected by each generation of ants and retains the better paths, which increases the diversity of path selection in the early stage of the algorithm and improves the convergence speed. Path smoothing is used in the algorithm to remove unnecessary nodes, reduce path length, and reduce risks for UAV balance control. Simulation experiments show that, compared with the traditional ant colony algorithm, the improved ant colony algorithm based on harmony search has faster convergence speed and better path, and in a more complex grid environment, the effect is more prominent.
[1] | Dijkstra, E.W. (1959) A Note on Two Problems in Connexion with Graphs. Numerische Mathematik, 1, 269-271.
https://doi.org/10.1007/BF01386390 |
[2] | 韩尧, 李少华. 基于改进人工势场法的无人机航迹规划[J]. 系统工程与电子技术, 2021, 43(11): 3305-3311. |
[3] | Goldberg, A.V., Kaplan, H. and Werneck, R.F. (2006) Reach for A*: Efficient Point-to-Point Shortest Path Algorithms. Alenex, 6, 129-143. https://doi.org/10.1137/1.9781611972863.13 |
[4] | 杨博, 刘树东, 鲁维佳, 潘玉恒. 改进遗传算法在机器人路径规划中的应用[J]. 现代制造工程, 2022(6): 9-16.
https://doi.org/10.16731/j.cnki.1671-3133.2022.06.002 |
[5] | 郝琨, 张慧杰, 李志圣, 刘永磊. 基于改进避障策略和双优化蚁群算法的机器人路径规划[J]. 农业机械学报, 2022, 53(8): 303-312+422. |
[6] | 黄鹤, 吴琨, 王会峰, 杨澜, 茹锋, 王珺. 基于改进飞蛾扑火算法的无人机低空突防路径规划[J]. 中国惯性技术学报, 2021, 29(2): 256-263. https://doi.org/10.13695/j.cnki.12-1222/o3.2021.02.017 |
[7] | Yu, X., Chen, W., Hu, X., et al. (2020) Path Planning in Multiple-AUV Systems for Difficult Target Traveling Missions: A Hybrid Metaheuristic Approach. IEEE Transactions on Cognitive and Developmental Systems, 12, 561-574.
https://doi.org/10.1109/TCDS.2019.2944945 |
[8] | Song, Q., Zhao, Q., Wang, S., et al. (2020) Dynamic Path Planning for Unmanned Vehicles Based on Fuzzy Logic and Improved Ant Colony Optimization. IEEE Access, 8, 62107-62115. https://doi.org/10.1109/ACCESS.2020.2984695 |
[9] | Yu, X., Chen, W., Gu, T., et al. (2019) ACO-A*: Ant Colony Optimization plus A* for 3-D Traveling in Environments with Dense Obstacles. IEEE Transactions on Evolutionary Computation, 23, 617-631.
https://doi.org/10.1109/TEVC.2018.2878221 |
[10] | 袁梦顺, 陈谋, 邵书义, 吴庆宪, 闫东. 基于改进精英蚁群算法的无人机三维航迹规划[J]. 火力与指挥控制, 2022, 47(2): 37-42. |
[11] | 马小陆, 梅宏, 龚瑞, 王兵, 吴紫恒. 基于改进ACS算法的移动机器人路径规划研究[J]. 湖南大学学报(自然科学版), 2021, 48(12): 79-88. https://doi.org/10.16339/j.cnki.hdxbzkb.2021.12.010 |
[12] | 陈琴, 魏军平, 刘洋, 韩楠, 吴涛, 刘美琦, 王鑫, 乔少杰. 基于禁忌搜索算法的传染病样本收集无人机调度方法[J]. 无线电工程, 2022, 52(7): 1238-1249. |
[13] | 蒲兴成, 宋欣琳. 分组教学蚁群算法改进及其在机器人路径规划中应用[J/OL]. 智能系统学报, 2022, 17(4): 764-771. http://kns.cnki.net/kcms/detail/23.1538.TP.20220518.0930.002.html, 2022-08-12. |
[14] | 胡致远, 王征, 杨洋, 尹洋. 基于人工鱼群-蚁群算法的UUV三维全局路径规划[J]. 兵工学报, 2022, 43(7): 1676-1684. |
[15] | 魏立新, 张钰锟, 孙浩, 侯仕杰. 基于改进蚁群和DWA算法的机器人动态路径规划[J]. 控制与决策, 2022, 37(9): 2211-2216. https://doi.org/10.13195/j.kzyjc.2021.1804 |
[16] | 俞佳慧, 栾萌. 改进蚁群算法在无人艇路径规划中的应用[J]. 控制工程, 2022, 29(3): 413-418.
https://doi.org/10.14107/j.cnki.kzgc.20210252 |
[17] | 刘雨青, 向军, 曹守启. 基于改进蚁群算法的水下自主航行机器人路径规划[J]. 计算机工程与科学, 2022, 44(3): 536-544. |
[18] | 杜力, 徐光辉, 汪繁荣. 自适应萤火虫算法改进蚁群算法的移动机器人路径规划[J]. 河南理工大学学报(自然科学版), 2022, 41(2): 124-130. https://doi.org/10.16186/j.cnki.1673-9787.2021010073 |
[19] | Dorigo, M., Maniezzo, V. and Colorni, A. (1991) The Ant System: An Autocatalytic Optimizing Process Technical Report 91-016. Dipartimento di Elettronica, Politecnicl di Milano, Milan. |
[20] | Dorigo, M., Maniezzo, V. and Colorni, A. (1996) The Ant System: Optimization by a Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics, 26, 29-41. https://doi.org/10.1109/3477.484436 |
[21] | 吴建旭, 于永进. 基于改进和声搜索算法的多目标配电网重构优化[J]. 电力系统保护与控制, 2021, 49(19): 78-86. https://doi.org/10.19783/j.cnki.pspc.201550 |