全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于LSTM模型的股价预测研究——以保利发展为例
Stock Price Forecasting Research Based on LSTM Model—Taking Poly Development as an Example

DOI: 10.12677/ASS.2022.1111617, PP. 4517-4527

Keywords: 股票市场,K线图,LSTM,时间序列数据
Stock Market
, K Line Chart, LSTM, Time Series Data

Full-Text   Cite this paper   Add to My Lib

Abstract:

股票市场受到国际形势、市场行情和国家政策等多因子影响,简单的K线图与机器学习预测很难抗击股价的波动随机性,导致股价预测精度不能达到投资参考水平。本文采用LSTM神经网络模型仿真保利发展(600048) 2018年2月13日至2022年3月30的时间序列收盘价,通过调节隐含单元数进行多次仿真,得到误差较小、可行性较强的结果。分析实验结果得到,向后预测的收盘价数据,得到的误差比极低。因此,本文实验得到LSTM模型能对长期随机波动的时间序列数据做出预测,且模型的精度高、可推广性强。
The stock market is affected by multiple factors such as international situation, market conditions and national policies. It is difficult for simple K-graph and machine learning prediction to resist the randomness of stock price fluctuations so that the accuracy of stock price prediction cannot reach the investment reference level. This paper uses LSTM neural network model to simulate the time series closing price of Poly Development (600048) from 13 February 2018 to 30 March 2022. By adjusting the hidden unit number for many times, the results of small error and strong feasibility are obtained, and by analyzing the closing price data, the error ratio is very low. Therefore, the LSTM model can predict the time-series data with long-term random fluctuations, with high accuracy and strong generalizability.

References

[1]  陈博闻. 基于技术指标及ARIMA模型预测股票价格——以中国平安保险集团公司股票调整后的收盘价为例[J]. 统计与管理, 2021, 36(7): 53-57.
[2]  王东, 王霄鹏, 杨川东. 一种基于主成分LSTM模型在股票预测中的研究[J]. 重庆理工大学学报(自然科学), 2021, 35(2): 282-288.
[3]  文宝石, 颜七笙. 数据多维处理LSTM股票价格预测模型[J]. 江西科学, 2020, 38(4): 443-449+472.
[4]  席小雅, 秦荷斌, 鲁志娟. 基于LSTM神经网络模型的股票价格变化预测研究——以百度股价为例[J]. 全国流通经济, 2022(16): 102-105.
[5]  梁宇佳, 宋东峰. 基于LSTM和情感分析的股票预测[J]. 科技与创新, 2021(21): 126-127.
[6]  冯宇旭, 李裕梅. 基于LSTM神经网络的沪深300指数预测模型研究[J]. 数学的实践与认识, 2019, 49(7): 308-315.
[7]  陈伟斌, 林奕真, 王宗跃. 股票信息挖掘与LSTM预测[J]. 集美大学学报(自然科学版), 2020, 25(5): 385-391.
[8]  黄超斌, 程希明. 基于LSTM神经网络的股票价格预测研究[J]. 北京信息科技大学学报(自然科学版), 2021, 36(1): 79-83.
[9]  Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural Computation, 9, 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133