全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

胡杨枝条水力结构特征在雌雄间的比较分析
Comparative Analysis of the Hydraulic Structure Characteristics of Populus euphratica Oliv. Branches between Male and Female

DOI: 10.12677/BR.2022.116078, PP. 641-651

Keywords: 胡杨,冠层,水力结构,雌雄
Populus euphratica Oliv.
, Canopy, Hydraulic Structure, Male and Female

Full-Text   Cite this paper   Add to My Lib

Abstract:

植物枝条水力结构特征能够反映植物水分运输能力,对了解树木生存与竞争乃至森林稳定性具有重要的生态学意义。在同一生境中比较胡杨雌、雄株枝条水力结构特征随冠层高度变化的雌雄差异,探讨胡杨雌雄株比导率(Ks)、叶比导率(Kl)、导水率丧失百分比(percent loss of hydraulic conductivity, PLC)、胡伯尔值(Hv)等水力结构参数与冠层高度的关系。结果表明:1) 随着冠层高度的增加,胡杨雌雄株枝条平均PLC随高度变化各异,变化范围在30%~55%之间,Ks和Kl逐渐增加,Hv表现出减少的趋势。2) 在同一冠层高度下,雄株枝条Ks、Kl显著高于雌株,表现出雄株水分运输效率较雌株高,且枝条末端叶片供水情况较好;雌株枝条Hv显著高于雄株,表明雌株枝条用于维持叶片水分的茎干组织在数量上较雄株多。说明在相同冠层高度下,雄株枝条导水效率显著高于雌株。3) 相关分析表明,胡杨雌雄株水力结构参数的变化和冠层高度密切相关,此外,这种变化与木质部横截面积大小有关。总之,胡杨雌雄株枝条导水率随不同冠层高度而变化,雄株比雌株表现出的导水能力更强。
The hydraulic structural characteristics of plant branches can reflect the water transport capacity of plants, which is of great ecological importance for understanding tree survival and competition and even forest stability. We compared the differences between male and female branches of Populus euphratica Oliv. with canopy height in the same habitat, and investigated the relationship between hydraulic structural parameters such as specific conductivity (Ks), leaf specific conductivity (Kl), percent loss of hydraulic conductivity (PLC), and Huber value (Hv) and canopy height in both male and female Populus euphratica plants. The results showed that: 1) With the increase of canopy height, the mean PLC of branches of both male and female Populus euphratica plants varied with height, ranging from 30% to 55%, Ks and Kl gradually increased, and Hv showed a decreasing trend. 2) Under the same canopy height, Ks and Kl of male branches were significantly higher than those of female plants, showing that male plants had higher water transport efficiency than female plants and better water supply to the leaves at the end of branches; Hv of female branches was significantly higher than that of male plants, indicating that female branches had more stem tissues for maintaining water in the leaves in terms of quantity than male plants. This indicates that the water conductivity of male branches is significantly higher than that of female branches under the same canopy height. 3) Correlation analysis showed that the variation of hydraulic structural parameters in both male and female Populus euphratica plants was closely related to canopy height, and in addition, this variation was related to the size of xylem cross-sectional area. In conclusion, the hydraulic conductivity of branches of male and female poplar plants varied with different canopy heights, and male plants exhibited better hydraulic conductivity than female plants.

References

[1]  Mayr, S., Beikircher, B., Obkircher, M.A., et al. (2010) Hydraulic Plasticity and Limitations of Alpine Rhododendron Species. Oecologia, 164, 321-330.
https://doi.org/10.1007/s00442-010-1648-7
[2]  He, W.Q., et al. (2020) Patterns in Nonstructural Carbohydrate Contents at the Tree Organ Level in Response to Drought Duration. Global Change Biology, 26, 3627-3638.
https://doi.org/10.1111/gcb.15078
[3]  Sapes, G., et al. (2019) Plant Water Content Integrates Hydraulics and Carbon Depletion to Predict Drought-Induced Seedling Mortality. Tree Physiology, 39, 1300-1312.
https://doi.org/10.1093/treephys/tpz062
[4]  Allen, C.D., Macalady, A.K., Chenchouni, H., et al. (2010) A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forest. Forest Ecology and Management, 259, 660-684.
https://doi.org/10.1016/j.foreco.2009.09.001
[5]  Barigah, T.S., Charrier, O., Douris, M., et al. (2013) Water Stress-Induced Xylem Hydraulic Failure Is a Causal Factor of Tree Mortality in Beech and Poplar. Annals of Botany, 112, 1431-1437.
https://doi.org/10.1093/aob/mct204
[6]  陈亚宁. 新疆塔里木河流域生态水文问题研究[M]. 北京: 科学出版社, 2010: 11-12.
[7]  Lambers, H., Chapin III, F.S. and Pons, T.L. (2008) Plant Physiological Ecology. Springer, New York, 163-223.
https://doi.org/10.1007/978-0-387-78341-3_5
[8]  付爱红, 陈亚宁, 李卫红, 等. 新疆塔里木河下游不同地下水位的胡杨水势变化分析[J]. 干旱区地理, 2004, 27(2): 207-211.
[9]  尹春英, 李春阳. 雌雄异株植物与性别比例有关的性别差异研究现状与展望[J]. 应用与环境生物学报, 2007, 6(3): 419-425.
[10]  Tyree, M.T. and Zimmermann, M.H. (2002) Xylem Structure and the Ascent of Sap. 2nd Edition, Springer-Verlag, Berlin, 1-257.
https://doi.org/10.1007/978-3-662-04931-0_1
[11]  Venturas, M., López, R., Gascó, A., et al. (2013) Hydraulic Properties of European Elms: Xylem Safety-Efficiency Tradeoff and Species Distribution in the Iberian Peninsula. Trees, 27, 1691-1701.
https://doi.org/10.1007/s00468-013-0916-7
[12]  蒋少伟, 周多多, 吴桂林, 等. 不同地下水埋深下胡杨枝条水力导度及其季节变化[J]. 干旱区研究, 2017, 34(3): 648-654.
[13]  Tyree, M.T. and Ewers, F.W. (1991) The Hydraulic Architecture of Trees and Other Woody Plants. New Phytologist, 119, 345-360.
https://doi.org/10.1111/j.1469-8137.1991.tb00035.x
[14]  Hao, G.Y., Wang, A.Y., Liu, Z.H., et al. (2011) Differentiation in Light Energy Dissipation between Hemiepiphytic and Non-Hemiepiphytic Ficus Species with Contrasting Xylem Hydraulic Conductivity. Tree Physiology, 31, 626-636.
https://doi.org/10.1093/treephys/tpr035
[15]  Hukin, D., Cochard, H., Dreyer, E., et al. (2005) Cavitation Vulnerability in Roots and Shoots: Does Populus euphratica Oliv., a Poplar from Arid Areas of Central Asia, Differ from Other Poplar Species. Journal of Experimental Botany, 56, 2003-2010.
https://doi.org/10.1093/jxb/eri198
[16]  翟洪波, 李吉跃, 姜金璞. 干旱胁迫对油松侧柏苗木水力结构特征的影响[J]. 北京林业大学学报, 2002, 24(4): 45-50.
[17]  Thomas, F.M. (2014) Ecology of Phreatophytes. In: Lüttge, U., Beyschlag, W. and Cushman, J., Eds., Progress in Botany, Vol. 75, Springer-Verlag, Berlin, 335-375.
https://doi.org/10.1007/978-3-642-38797-5_11
[18]  Chen, Y.N., Xu, C.C., Chen, Y.P., et al. (2013) Progress, Challenges and Prospects of Eco-Hydrological Studies in the Tarim River Basin of Xinjiang, China. Environment Management, 51, 138-153.
https://doi.org/10.1007/s00267-012-9823-8
[19]  郑亚琼, 冯梅, 李志军. 胡杨枝芽生长特征及其展叶物候特征[J]. 生态学报, 2015, 35(4): 1198-1207.
[20]  白雪, 张淑静, 郑彩霞, 等. 胡杨多态叶光合和水分生理的比较[J]. 北京林业大学学报, 2011, 33(6): 6.
[21]  顾亚亚, 张世卿, 李先勇, 等. 濒危物种胡杨胸径与树龄关系研究[J]. 塔里木大学学报, 2013, 25(2): 66-69.
[22]  Niu, C.Y., Menizer, F.C. and Hao, G.Y. (2017) Divergence in Strategies for Coping with Winter Embolism among Co-Occurring Temperate Tree Species: The Role of Positive Xylem Pressure, Wood Type and Tree Stature. Functional Ecology, 31, 1550-1560.
https://doi.org/10.1111/1365-2435.12868
[23]  谢东锋, 马履一, 王华田. 7种造林树种木质部栓塞脆弱性研究[J]. 浙江林学院学报, 2004, 21(2): 138-143.
[24]  徐新武, 樊大勇, 谢宗强, 等. 不同冲洗液对毛白杨油松枝条水力导度和抵抗空穴化能力测定值的影响[J]. 植物生态学报, 2009, 33(1): 150-160.
[25]  Miranda, J.D., Padilla, F.M., Martínez-Vilalta, J., et al. (2010) Woody Species of a Semi-Arid Community Are Only Moderately Resistant to Cavitation. Functional Plant Biology, 37, 828-839.
https://doi.org/10.1071/FP09296
[26]  木巴热克?阿尤普, 陈亚宁, 郝兴明, 等. 极端干旱环境下的胡杨木质部水力特征[J]. 生态学报, 2012, 32(9): 2748-2758.
[27]  徐茜, 陈亚. 胡杨茎木质部解剖结构与水力特性对干旱胁迫处理的响应[J]. 中国生态农业学报, 2012, 20(9): 1059-1065.
[28]  Carter, J.L. and White, D.A. (2009) Plasticity in the Huber Value Contributes to Homeostasis in Leaf Water Relations of a Mallee Eucalypt with Variation to Groundwater Depth. Tree Physiology, 29, 1407-1418.
https://doi.org/10.1093/treephys/tpp076
[29]  Togashi, H.F., Prentice, I.C., Evans, B.J., et al. (2015) Morphological and Moisture Availability Controls of the Leaf Area-to-Sapwood Area Ratio: Analysis of Measurements on Australian Trees. Ecology and Evolution, 5, 1263-1270.
https://doi.org/10.1002/ece3.1344
[30]  王丁, 薛建辉, 姚健. 林木水力结构与抗旱性研究综述[J]. 中国沙漠, 2009, 29(4): 711-717.
[31]  刘娟娟, 李吉跃, 张建国. 干旱胁迫对油松和侧柏水分运输安全性和有效性的影响[J]. 生态学报, 2010, 30(9): 2507-2514.
[32]  李端, 司建华, 张小由, 等. 胡杨(Populus euphratica)对干旱胁迫的生态适应[J]. 中国沙漠, 2020, 40(2): 17-23.
[33]  Juvany, M. and Munne-Bosch, S. (2015) Sex-Related Differences in Stress Tolerance in Dioecious Plants: A Critical Appraisal in a Physiological Context. Journal of Experimental Botany, 66, 6083-6092.
https://doi.org/10.1093/jxb/erv343
[34]  Lei, Y., Jiang, Y.L., Chen, K., et al. (2017) Reproductive Investments Driven by Sex and Altitude in Sympatric Populus and Salix Trees. Tree Physiology, 37, 1503-1514.
https://doi.org/10.1093/treephys/tpx075
[35]  夏振华, 陈亚宁, 朱成刚, 等. 干旱胁迫环境下的胡杨叶片气孔变化[J]. 干旱区研究, 2018, 35(5): 1111-1117.
[36]  刘一凡, 冯俊鑫, 王斌强, 等. 胡杨雌雄株叶片气孔特征差异比较[J]. 甘肃林业, 2022, 7(1): 39-41.
[37]  翟军团, 陈向向, 李秀, 等. 胡杨(Populus euphratica)枝叶异速生长关系随发育阶段及冠层高度变化的性别差异[J]. 中国沙漠, 2023(1): 1-12.
[38]  李秀, 翟军团, 金禧凤, 等. 胡杨雌雄株叶片形态差异的比较分析[J]. 干旱区资源与环境, 2022, 36(7): 180-186.
[39]  翟洪波, 李吉跃. 元宝枫苗木的水力结构特征[J]. 应用生态学报, 2003, 14(9): 1411-1415.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133