|
应力条件下埋地输油管线菌致开裂行为研究进展
|
Abstract:
应力腐蚀开裂(SCC)作为一种破坏性强又不易发现的潜在性威胁,一直是腐蚀领域的重要研究课题。传统应力腐蚀机理从阳极溶解和氢至开裂两方面解释了SCC现象。然而单纯的应力条件已经不足以解释实际埋地管线的腐蚀过程,大量的事故现场调查表明硫酸盐还原菌(SRB)作为一种广泛分布于土壤环境中的厌氧型腐蚀性微生物,它的存在会与应力形成协同作用导致菌致开裂行为的发生。近年来的研究证实应力对于SRB的生长代谢无明显影响,而二者的协同作用可以从三个方面加速腐蚀:1) 改变腐蚀产物结构,增加腐蚀产物含硫量,提高材料局部腐蚀敏感性;2) 加速材料表面点蚀萌生和裂纹扩散,诱导材料发生二次点蚀现象;3) 促进基底对于H0的吸收,为氢脆过程提供了H0的来源。本文首先综述了传统应力腐蚀开裂机理,并分别从SRB影响金属材料应力腐蚀敏感性、SRB诱导点蚀和SRB促进氢脆三个方面综述了SRB诱导下的应力腐蚀研究进展,为日后埋地管线的安全服役提供了理论依据。
Stress corrosion cracking (SCC), as a potential threat that is highly destructive and well covert, has always been an important research topic in the field of corrosion. The traditional stress corrosion mechanism explains SCC phenomenon from two aspects of anodic dissolution and hydrogen-induced cracking. However, pure stress condition is insufficient to explain the actual process of buried pipeline corrosion, a large number of accident site investigations have shown that sulfate-reducing bac-teria (SRB), as an anaerobic corrosive microorganism widely distributed in the soil environment, can synergize with stress formation and lead to the occurrence of bacterial-induced cracking behavior. Recent studies have confirmed that stress has no significant effect on the growth and metabolism of SRB, the synergistic effect of the two can accelerate corrosion from three aspects: 1) Change the structure of corrosion products, increase the sulfur content of corrosion products, and improve the local corrosion sensitivity of materials; 2) Accelerate the initiation of pitting corrosion and crack propagation on the surface of materials, and induce secondary pitting corrosion of materials phenomenon; 3) Promote the absorption of H0 by the substrate and provide a source of H0 for the hydrogen induced cracking process. In this paper, the traditional stress corrosion cracking mechanism is firstly reviewed, and the research progress of stress corrosion induced by SRB is reviewed from three aspects: SRB affects the stress corrosion susceptibility of metal materials, SRB induced pitting corrosion and SRB promotes hydrogen induced cracking, which provides a theoret-ical basis for the safe service of buried pipelines in the future.
[1] | Volgina, N., Shulgin, A. and Khlamkova, S. (2021) Possibilities of Diagnosis of Stress Corrosion Cracking of Main Gas Pipelines from the Point of View of Microbiology. Materials Today: Proceedings, 38, 1697-1700.
https://doi.org/10.1016/j.matpr.2020.08.224 |
[2] | Mcneill, L.S. and Edwards, M. (2001) Iron Pipe Corrosion in Distribution Systems. Journal AWWA, 93, 88-100.
https://doi.org/10.1002/j.1551-8833.2001.tb09246.x |
[3] | 张春生, 申龙涉, 郭慧军, 等. 埋地油气管道外腐蚀原因及防腐技术的研究进展[J]. 当代化工, 2011, 40(2): 202-205. |
[4] | 韦博鑫, 许进, 高立群, 等. 油气管线钢土壤环境硫酸盐还原菌腐蚀研究进展[J]. 表面技术, 2021, 50(3): 30-44. |
[5] | Liu, H., Fu, C., Gu, T., et al. (2015) Corrosion Behavior of Carbon Steel in the Presence of Sulfate Reducing Bacteria and Iron Oxidizing Bacteria Cultured in Oilfield Produced Water. Corrosion Science, 100, 484-495.
https://doi.org/10.1016/j.corsci.2015.08.023 |
[6] | Liu, H., Zheng, B., Xu, D., et al. (2014) Effect of Sul-fate-Reducing Bacteria and Iron-Oxidizing Bacteria on the Rate of Corrosion of an Aluminum Alloy in a Central Air-Conditioning Cooling Water System. Industrial & Engineering Chemistry Research, 53, 7840-7846. https://doi.org/10.1021/ie4033654 |
[7] | Liu, H. and Cheng, Y.F. (2018) Microbial Corrosion of X52 Pipeline Steel under Soil with Varied Thicknesses Soaked with a Simulated Soil Solution Containing Sulfate-Reducing Bacteria and the Associated Galvanic Coupling Effect. Electrochimica Acta, 266, 312-325. https://doi.org/10.1016/j.electacta.2018.02.002 |
[8] | 张斌, 钱成文, 王玉梅, 等. 国内外高钢级管线钢的发展及应用[J]. 石油工程建设, 2012, 38(1): 1-4+64+83. |
[9] | 罗金恒, 胥聪敏, 杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327. |
[10] | Boldyrev, D.A., Amirov, R.N. and Nefed’ev, S.P. (2020) Microstructure of Impurity Phase Inclusions in Gray Cast Iron and Their Composition. IOP Conference Series: Materials Science and Engineering, 966, Article ID: 012023.
https://doi.org/10.1088/1757-899X/966/1/012023 |
[11] | Jia, R., Yang, D., Xu, J., et al. (2017) Microbiologically In-fluenced Corrosion of C1018 Carbon Steel by Nitrate Reducing Pseudomonas aeruginosa Biofilm under Organic Car-bon Starvation. Corrosion Science, 127, 1-9.
https://doi.org/10.1016/j.corsci.2017.08.007 |
[12] | Juzeliūnas, E., Ramanauskas, R., Lugauskas, A., et al. (2007) Microbially Influenced Corrosion of Zinc and Aluminium—Two-Year Subjection to Influence of Aspergillus niger. Corrosion Science, 49, 4098-4112.
https://doi.org/10.1016/j.corsci.2007.05.004 |
[13] | 马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297. |
[14] | Iverson, W.P. (1972) Biological Corrosion. In: Fontana, M.G. and Staehle, R.W., Eds., Advances in Corrosion Science and Technology, Springer US, Boston, MA, 1-42. https://doi.org/10.1007/978-1-4615-8255-7_1 |
[15] | Li, S.Y., Kim, Y.G., Jeon, K.S., et al. (2000) Microbiologically Influenced Corrosion of Underground Pipelines under the Disbonded Coatings. Metals and Materials, 6, 281-286. https://doi.org/10.1007/BF03028224 |
[16] | Costello, J.A. (1974) Cathodic Depolarization by Sulphate-Reducing Bacteria. Academy of Science for South Africa (ASSAF), 70, 202-204. |
[17] | 夏进, 徐大可, 刘宏芳, 等. 从生物能量学和生物电化学角度研究金属微生物腐蚀的机理[J]. 材料研究学报, 2016, 30(3): 161-170. |
[18] | Xu, D. and Gu, T. (2014) Carbon Source Starvation Triggered More Aggressive Corrosion Against Carbon Steel by the Desulfovibrio vul-garis Biofilm. International Biodeterioration & Biodegradation, 91, 74-81.
https://doi.org/10.1016/j.ibiod.2014.03.014 |
[19] | Zhang, P., Xu, D., Li, Y., et al. (2015) Electron Mediators Accel-erate the Microbiologically Influenced Corrosion of 304 Stainless Steel by the Desulfovibrio vulgaris Biofilm. Bioelec-trochemistry, 101, 14-21.
https://doi.org/10.1016/j.bioelechem.2014.06.010 |
[20] | Venzlaff, H., Enning, D., Srinivasan, J., et al. (2013) Accel-erated Cathodic Reaction in Microbial Corrosion of Iron Due to Direct Electron Uptake by Sulfate-Reducing Bacteria. Corrosion Science, 66, 88-96.
https://doi.org/10.1016/j.corsci.2012.09.006 |
[21] | 董希青, 黄彦良. 不锈钢在海洋环境中的环境敏感断裂研究进展[J]. 中国腐蚀与防护学报, 2012, 32(3): 189-194. |
[22] | 王田丽, 刘宏芳, 韩霞. 油田注水管道固着菌检测及控制技术[J]. 油气田环境保护, 2014, 24(4): 8-11+82. |
[23] | 焦洋, 张胜寒, 檀玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(4): 417-428. |
[24] | 谢尔盖?希普利洛夫. 应力腐蚀破裂和腐蚀疲劳研究: 历史回顾与趋势[C]//2002中国国际腐蚀控制大会. 北京: 中国化工学会, 2002: 288-293. |
[25] | Francis, R. (1997) Basic Corrosion Technology for Scientists and Engineers. British Corrosion Journal, 32, 29.
https://doi.org/10.1179/bcj.1997.32.1.29 |
[26] | Congleton, J., Shih, H.C., Shoji, T., et al. (1985) The Stress Corro-sion Cracking of Type 316 Stainless Steel in Oxygenated and Chlorinated High Temperature Water. Corrosion Science, 25, 769-788.
https://doi.org/10.1016/0010-938X(85)90010-1 |
[27] | 李嘉栋, 陈超, 张世贵, 等. 不同应力条件下不锈钢局部腐蚀行为的研究进展[J]. 表面技术, 2021, 50(3): 101-115. |
[28] | 刘传森, 李壮壮, 陈长风. 不锈钢应力腐蚀开裂综述[J]. 表面技术, 2020, 49(3): 1-13. |
[29] | Haruna, T., Zhu, L. and Shibata, T. (2000) Effects of Annealing Conditions on Stress Corrosion Cracking of Carbon Steel in Aqueous Bicarbonate Solution. Zairyo-to-Kankyo, 49, 138-143. https://doi.org/10.3323/jcorr1991.49.138 |
[30] | Hoar, T. and Hines, J. (1954) The Corrosion Potential of Stainless Steels during Stress Corrosion. Journal of the Iron and Steel Institute, 177, 248. |
[31] | Raicheff, R.G., Damjanovic, A. and Bockris, J.O.M. (1967) Dependence of the Velocity of the Anodic Dissolution of Iron on Its Yield Rate under Ten-sion. The Journal of Chemical Physics, 47, 2198-2199.
https://doi.org/10.1063/1.1712258 |
[32] | Despic, A.R., Raicheff, R.G. and Bockris, J.O.M. (1968) Mechanism of the Acceleration of the Electrodic Dissolution of Metals during Yielding under Stress. The Journal of Chemical Physics, 49, 926-938.
https://doi.org/10.1063/1.1670162 |
[33] | Mcevily, A.J. and Bond, A.P. (1965) On the Initiation and Growth of Stress Corrosion Cracks in Tarnished Brass. Journal of the Electrochemical Society, 112, 131. https://doi.org/10.1149/1.2423481 |
[34] | Prange, F.A. (1952) Hydrogen Embrittlement Tests on Various Steels. Corrosion, 8, 355-360.
https://doi.org/10.5006/0010-9312-8.10.355 |
[35] | Niwa, M., Shikama, T. and Yonezu, A. (2015) Mechanism of Hydrogen Embrittlement Cracking Produced by Residual Stress from Indentation Impression. Materials Science and En-gineering: A, 624, 52-61.
https://doi.org/10.1016/j.msea.2014.11.008 |
[36] | Lynch, S.P. (2007) Progression Markings, Striations, and Crack-Arrest Markings on Fracture Surfaces. Materials Science and Engineering: A, 468-470, 74-80. https://doi.org/10.1016/j.msea.2006.09.083 |
[37] | Novokshchenov, V. (1994) Brittle Fractures of Prestressed Bridge Steel Exposed to Chloride-Bearing Environments Caused by Corrosion-Generated Hydrogen. Corrosion, 50, 477-485. https://doi.org/10.5006/1.3293526 |
[38] | Kan, B., Wu, W., Yang, Z., et al. (2020) Stress-Induced Hydro-gen Redistribution and Corresponding Fracture Behavior of Q960E Steel At Different Hydrogen Content. Materials Sci-ence and Engineering: A, 775, Article ID: 138963.
https://doi.org/10.1016/j.msea.2020.138963 |
[39] | Wu, W., Wang, Y., Tao, P., et al. (2018) Cohesive Zone Model-ing of Hydrogen-Induced Delayed Intergranular Fracture in High Strength Steels. Results in Physics, 11, 591-598. https://doi.org/10.1016/j.rinp.2018.10.001 |
[40] | Yan, Q., Yan, L., Pang, X., et al. (2021) Crack Initiation Stress Measurement of Hydrogen-Induced Cracking with Small Tapered Specimen Method. Materials Science and Engineering: A, 814, Article ID: 141228.
https://doi.org/10.1016/j.msea.2021.141228 |
[41] | Lenhart, T.R., Duncan, K.E., Beech, I.B., et al. (2014) Identifica-tion and Characterization of Microbial Biofilm Communities Associated with Corroded Oil Pipeline Surfaces. Biofouling, 30, 823-835.
https://doi.org/10.1080/08927014.2014.931379 |
[42] | Jain, L.A. (2011) Evaluation of the Propensity for Microbio-logically Influenced Corrosion of Steels in Fuel Grade Ethanol Environments. Colorado School of Mines, Colora-do. |
[43] | Liu, W. (2014) Rapid MIC Attack on 2205 Duplex Stainless Steel Pipe in a Yacht. Engineering Failure Analy-sis, 42, 109-120. https://doi.org/10.1016/j.engfailanal.2014.04.001 |
[44] | Liu, Z.Y., Li, H., Jia, Z.J., et al. (2016) Failure Analysis of P110 Steel Tubing in Low-Temperature Annular Environment of CO2 Flooding Wells. Engineering Failure Analysis, 60, 296-306.
https://doi.org/10.1016/j.engfailanal.2015.11.041 |
[45] | 赵健, 谢飞, 宫克, 等. X70管线钢在硫酸盐还原菌作用下的应力腐蚀开裂行为[J]. 表面技术, 2017, 46(10): 108-114. |
[46] | Kholodenko, V.P., Jigletsova, S.K., Chugunov, V.A., et al. (2000) Chemicomicrobiological Diagnostics of Stress Corrosion Cracking of Trunk Pipelines. Applied Bio-chemistry and Microbiology, 36, 594-601.
https://doi.org/10.1023/A:1026652824694 |
[47] | Rao, T.S. and Nair, K.V.K. (1998) Microbiologically Influenced Stress Corrosion Cracking Failure of Admiralty Brass Condenser Tubes in a Nuclear Power Plant Cooled by Freshwater. Corrosion Science, 40, 1821-1836.
https://doi.org/10.1016/S0010-938X(98)00079-1 |
[48] | 李雪, 朱庆杰, 周宁, 等. 油气管道腐蚀与防护研究进展[J]. 表面技术, 2017, 46(12): 206-217. |
[49] | 朱世东, 李金灵, 付安庆, 等. 油气生产过程中套损腐蚀失效与防治技术研究进展[J]. 表面技术, 2019, 48(5): 28-35. |
[50] | 王丹. 硫酸盐还原菌对X80管线钢在土壤环境中腐蚀行为的影响[D]: [博士学位论文]. 青岛: 中国石油大学(华东), 2015. |
[51] | Li, X., Xie, F., Wang, D., et al. (2018) Effect of Residual and External Stress on Corrosion Behaviour of X80 Pipeline Steel in Sulphate-Reducing Bacteria Environment. Engineering Failure Analysis, 91, 275-290. |
[52] | 曾锋, 刘向荣, 白金刚. 硫酸盐还原菌对16Mn钢在海泥中应力腐蚀开裂敏感性的影响[J]. 科技信息(科学教研), 2007(13): 276-277. |
[53] | 王欣彤, 陈旭, 韩镇泽, 等. 硫酸盐还原菌作用下2205双相不锈钢在3.5% NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50. |
[54] | 张杰, 李林涛, 黄知娟. 低H2S、高CO2分压条件下双相不锈钢应力腐蚀敏感性研究[J]. 表面技术, 2016, 45(7): 96-101. |
[55] | 吴堂清, 周昭芬, 王鑫铭, 等. 弹塑性应力作用下X80管线钢的菌致开裂行为[J]. 表面技术, 2019, 48(7): 285-295. |
[56] | 孙成, 李喜明, 许进, 等. 尿素对土壤中碳钢微生物腐蚀的影响[J]. 物理化学学报, 2012, 28(11): 2659-2668. |
[57] | Dom?alicki, P., Lunarska, E. and Birn, J. (2007) Effect of Cathodic Polarization and Sulfate Reducing Bacteria on Mechanical Properties of Different Steels in Synthetic Sea Water. Materials and Corrosion, 58, 413-421.
https://doi.org/10.1002/maco.200604024 |
[58] | 李鑫, 尚东芝, 于浩波, 等. 油气管道SRB腐蚀研究新进展[J]. 表面技术, 2021, 50(2): 211-220. |
[59] | 吴堂清. X80管线钢硫酸盐还原菌腐蚀开裂机理研究[D]: [博士学位论文]. 北京: 中国科学院大学, 2015. |
[60] | 万红霞, 李婷婷, 宋东东, 等. X80管线钢在硫酸盐还原菌作用下的腐蚀行为[J]. 表面技术, 2020, 49(9): 281-290. |
[61] | Wu, T., Yan, M., Yu, L., et al. (2019) Stress Corrosion of Pipeline Steel under Disbonded Coating in a SRB-Containing Environment. Corrosion Science, 157, 518-530. https://doi.org/10.1016/j.corsci.2019.06.026 |
[62] | Akhi, A.H. and Dhar, A.S. (2021) Stress Intensity Factors for External Corrosions and Cracking of Buried Cast Iron Pipes. Engineering Fracture Mechanics, 250, Article ID: 107778. https://doi.org/10.1016/j.engfracmech.2021.107778 |
[63] | Wu, T., Xu, J., Sun, C., et al. (2014) Microbiological Corrosion of Pipeline Steel under Yield Stress in Soil Environment. Corrosion Science, 88, 291-305. https://doi.org/10.1016/j.corsci.2014.07.046 |
[64] | Abedi, S.S., Abdolmaleki, A. and Adibi, N. (2007) Failure Anal-ysis of SCC and SRB Induced Cracking of a Transmission Oil Products Pipeline. Engineering Failure Analysis, 14, 250-261.
https://doi.org/10.1016/j.engfailanal.2005.07.024 |
[65] | Wu, T., Xu, J., Yan, M., et al. (2014) Synergistic Effect of Sulfate-Reducing Bacteria and Elastic Stress on Corrosion of X80 Steel in Soil Solution. Corrosion Science, 83, 38-47. https://doi.org/10.1016/j.corsci.2014.01.017 |
[66] | Dom?alicki, P., Birn, J. and Lunarska, E. (2008) Hydrogen Per-meation Measurements in Natural Sea Environment. Materials and Corrosion, 59, 732-738. https://doi.org/10.1002/maco.200804111 |
[67] | De Romero, M.F., Duque, Z., De Rincón, O.T., et al. (2002) Micro-biological Corrosion: Hydrogen Permeation and Sulfate-Reducing Bacteria. Corrosion, 58, 429-435. https://doi.org/10.5006/1.3277633 |
[68] | De Romero, M., Duque, Z., Rodríguez, L., et al. (2005) A Study of Micro-biologically Induced Corrosion by Sulfate-Reducing Bacteria on Carbon Steel Using Hydrogen Permeation. Corrosion, 61, 68-75.
https://doi.org/10.5006/1.3278162 |
[69] | Von Wolzogen Kuhr, C. and Van Der Vlugt, L. (1934) Graphitization of Cast Iron as an Electrochemical Process in Anaerobic Soils. Translation in Corrosion, 17, 293-299. |
[70] | Gee, R. and Chen, Z. (1995) Hydrogen Embrittlement during the Corrosion of Steel by Wet Elemental Sulphur. Corrosion Science, 37, 2003-2011. https://doi.org/10.1016/0010-938X(95)00088-2 |
[71] | Zucchi, F., Grassi, V., Monticelli, C., et al. (2006) Hydrogen Embrittlement of Duplex Stainless Steel under Cathodic Protection in Acidic Artificial Sea Water in the Presence of Sulphide Ions. Corrosion Science, 48, 522-530.
https://doi.org/10.1016/j.corsci.2005.01.004 |
[72] | 孙建波, 靳亚鹏, 孙冲, 等. H2S-CO2环境下低铬钢的硫化物应力腐蚀开裂行为[J]. 表面技术, 2016, 45(2): 1-7. |
[73] | 宋洋, 赵国仙, 王映超, 等. Q245R钢抗H2S应力腐蚀开裂分析[J]. 焊管, 2021, 44(5): 38-43+49. |
[74] | 艾志久, 范钰玮, 赵乾坤. H2S对油气管材的腐蚀及防护研究综述[J]. 表面技术, 2015, 44(9): 108-115. |
[75] | 张显程, 巩建鸣, 涂善东, 等. 高强钢硫化物应力腐蚀开裂及防范[J]. 炼油技术与工程, 2003, 33(10): 25-28. |
[76] | 王峰, 王立贤, 刘智勇, 等. TP110TS油管钢在酸性气田环境中的应力腐蚀行为研究[J]. 表面技术, 2015, 44(3): 57-62+73. |
[77] | 袁玮, 黄峰, 赵小宇, 等. X70 MS管线钢焊接接头硫化物应力腐蚀敏感性及氢捕获效率[J]. 表面技术, 2020, 49(8): 34-44. |
[78] | Iyer, R., Takeuchi, I., Zamanzadeh, M., et al. (1990) Hydrogen Sulfide Effect on Hydrogen Entry into Iron—A Mechanistic Study. Corrosion, 46, 460-468. https://doi.org/10.5006/1.3585133 |
[79] | 王励钊, 李春福, 曹文豪. 电化学充氢条件下TWIP钢应力腐蚀敏感性的研究[J]. 表面技术, 2012, 41(4): 39-41. |
[80] | 陶杉, 徐燕东, 杜春朝. 超级13Cr管材在低H2S高CO2环境中的开裂敏感性研究[J]. 表面技术, 2016, 45(7): 90-95. |
[81] | 宋东东, 贾玉杰, 涂小慧, 等. Cl?对冷变形316L奥氏体不锈钢在H2S环境下应力腐蚀的影响[J]. 表面技术, 2020, 49(3): 23-27. |
[82] | Sun, C., Li, X., Xu, J., et al. (2012) Effect of Urea on Microbiologically Induced Corrosion of Carbon Steel in Soil. Acta Physico-Chimica Sinica, 28, 2659-2668. https://doi.org/10.3866/PKU.WHXB201208243 |
[83] | Lunarska, E., Birn, J. and Dom?alicki, P. (2007) Hydrogen Uptake by Structural Steels at Cathodic Protection in Sea Water Inoculated with Sulfate Reducing Bacteria. Materials and Corrosion, 58, 13-19.
https://doi.org/10.1002/maco.200603980 |
[84] | Biezma, M.V. (2001) The Role of Hydrogen in Microbiologically Influenced Corrosion and Stress Corrosion Cracking. International Journal of Hydrogen Energy, 26, 515-520. https://doi.org/10.1016/S0360-3199(00)00091-4 |
[85] | Sowards, J.W., Williamson, C.H.D., Weeks, T.S., et al. (2014) The Effect of Acetobacter sp. and a Sulfate-Reducing Bacterial Consortium from Ethanol Fuel Environments on Fatigue Crack Propagation in Pipeline and Storage Tank Steels. Corrosion Science, 79, 128-138. https://doi.org/10.1016/j.corsci.2013.10.036 |
[86] | 谢飞, 王丹, 吴明, 等. 氢对X80钢在库尔勒土壤模拟溶液中应力腐蚀开裂行为的影响[J]. 中南大学学报(自然科学版), 2016, 47(2): 690-696. |
[87] | 梅华生, 王长朋, 张帷, 等. 电化学充氢对X80管线钢在鹰潭土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 388-394. |
[88] | Fangyu, G., Feng, H., Wei, Y., et al. (2021) Effect of Cyclic Stress Frequency on Corrosion Electrochemical Behavior of MS X65 Pipeline Steel in H2S Containing Medium. Journal of Chinese Society for Corrosion and Protection, 41, 187-194. |