All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

电化学方法制备H2O2催化剂研究进展
Recent Advances in Catalysts for Electrochemical Methods of H2O2 Production

DOI: 10.12677/NAT.2022.124026, PP. 258-269

Keywords: 过氧化氢,2电子氧还原反应,催化剂,电化学
Hydrogen Peroxide (H2O2)
, Two-Electron Oxygen Reduction Reaction, Catalysts, Electrochemistry

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过氧的电化学反应制备H2O2,是一种绿色环保、易于实现的新能源利用途径,近年来受到了广泛的关注,有望成为目前工业蒽醌法的替代工艺。有效实现这一工艺的根本条件是使用低成本、高效的电催化剂,这也是决定H2O2生产效率的关键因素。本文综述了近几年通过2电子氧化还原路径直接制备H2O2所取得的进展,着重介绍了催化剂结构、组成与催化活性之间的依赖关系以及相关催化机制,最后,对2电子氧还原催化剂的发展给出了展望。
Direct electrochemical production of hydrogen peroxide (H2O2) through two-electron oxygen electrochemistry is an effective way to uti-lization of green energy, which has attracted widespread attention in recent years and has emerged as the most promising method to replace the traditional anthraquinone process. The practical ap-plication of these processes depends greatly on the low-cost and highly effective catalysts, which are also the determining factor for theH2O2 production efficiency. Herein, we review the advances in electrochemical H2O2 production through a two-electron Oxygen Reduction Reaction (ORR). We fo-cus on the relationship between the unique structure-, component-, and composition-dependent electrochemical performance, as well as the related catalytic mechanisms. Finally, the perspective on the development of the catalysts for two-electron ORR is provided.

References

[1]  Myers, R.L. (2007) The 100 Most Important Chemical Compounds, a Reference Guide. Greenwood Publishing Group, Westport.
[2]  潘智勇, 邢定峰. 过氧化氢市场现状和技术发展趋势[J]. 现代化工, 2021, 41(4): 11-16.
[3]  胡长诚. 国内外蒽醌法制过氧化氢工艺技术研发新进展[J]. 化学推进剂与高分子材料, 2017, 15(2): 1-13+47.
[4]  Edwards, J.K., Freakley, S.J., Carley, A.F., Kiely, C.J. and Hutchings, G.J. (2014) Strategies for De-signing Supported Gold-Palladium Bimetallic Catalysts for the Direct Synthesis of Hydrogen Peroxide. Accounts of Chemical Research, 43, 845-854.
https://doi.org/10.1021/ar400177c
[5]  Yi, Y., Wang, L., Li, G. and Guo, H. (2016) A Review on Research Progress in the Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen: No-ble-Metal Catalytic Method, Fuel-Cell Method and Plasma Method. Catalysis Science & Technology, 6, 1593-1610.
https://doi.org/10.1039/C5CY01567G
[6]  Ad?i?, R.R., Tripkovi?, A.V. and Markovi?, N.M. (1983) Structural Effects in Electrocatalysis: Oxidation of Formic Acid and Oxygen Reduction on Single-Crystal Electrodes and the Effects of Foreign Metal Adatoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 150, 79-88.
https://doi.org/10.1016/S0022-0728(83)80192-2
[7]  Jirkovsky, J.S., Halasa, M. and Schiffrin, D.J. (2010) Kinet-ics of Electrocatalytic Reduction of Oxygen and Hydrogen Peroxide on Dispersed Gold Nanoparticles. Physical Chemis-try Chemical Physics, 12, 8042-8053.
https://doi.org/10.1039/c002416c
[8]  Lu, Y., Jiang, Y., Gao, X. and Chen, W. (2014) Charge State-Dependent Catalytic Activity of [Au25(Sc12h25)18] Nanoclusters for the Two-Electron Reduction of Dioxygen to Hydrogen Per-oxide. Chemical Communications, 50, 8464-8467.
https://doi.org/10.1039/C4CC01841A
[9]  Zheng, Z., Ng, Y.H., Wang, D.-W. and Amal, R. (2016) Epitaxial Growth of Au-Pt-Ni Nanorods for Direct High Selectivity H2O2 Production. Advanced Materials, 28, 9949-9955.
https://doi.org/10.1002/adma.201603662
[10]  Xia, Y., Zhang, Y., Lyu, Z., Zitao, C., Zhu, S., Shi, Y., Chen, R., Xie, M., Yao, Y., Chi, M. and Shao, M. (2021) Maximizing the Catalytic Performance of Pd@Auxpd1?x Nanocubes in H2O2 Production by Reducing Shell Thickness to Increase Compositional Stability. Angewandte Chemie, 133, 19795-19799.
https://doi.org/10.1002/ange.202105137
[11]  Pizzutilo, E., Kasian, O., Choi, C.H., Cherevko, S., Hutchings, G.J., Mayrhofer, K.J.J. and Freakley, S.J. (2017) Electrocatalytic Synthesis of Hydrogen Peroxide on Au-Pd Nanoparticles: From Fundamentals to Continuous Production. Chemical Physics Letters, 683, 436-442.
https://doi.org/10.1016/j.cplett.2017.01.071
[12]  Jirkovsky, J.S., Panas, I., Ahlberg, E., Halasa, M., Romani, S. and Schiffrin, D.J. (2011) Single Atom Hot-Spots at Au-Pd Nanoalloys for Electrocatalytic H2O2 Production. Journal of the American Chemical Society, 133, 19432-19441.
https://doi.org/10.1021/ja206477z
[13]  Siahrostami, S., Verdaguer-Casadevall, A., Karamad, M., Deiana, D., Malacrida, P., Wickman, B., Escudero-Escribano, M., Paoli, E.A., Frydendal, R., Hansen, T.W., Chorkendorff, I., Ste-phens, I.E.L. and Rossmeisl, J. (2013) Enabling Direct H2O2 Production through Rational Electrocatalyst Design. Nature Materials, 12, 1137-1143.
https://doi.org/10.1038/nmat3795
[14]  Deiana, D., Verdaguer-Casadevall, A., Malacrida, P., Stephens, I.E.L., Chorkendorff, I., Wagner, J.B. and Hansen, T.W. (2015) Determination of Core-Shell Structures in Pd-Hg Nanoparticles by STEM-EDX. ChemCatChem, 7, 3748-3752.
https://doi.org/10.1002/cctc.201500791
[15]  Von Weber, A. and Anderson, S.L. (2016) Electrocatalysis by Mass-Selected Ptn Clusters. Accounts of Chemical Research, 49, 2632-2639.
https://doi.org/10.1021/acs.accounts.6b00387
[16]  Yang, S., Kim, J., Tak, Y.J., Soon, A. and Lee, H. (2016) Sin-gle-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions. Angewandte Chemie International Edition, 55, 2058-2062.
https://doi.org/10.1002/anie.201509241
[17]  Yang, S., Tak, Y.J., Kim, J., Soon, A. and Lee, H. (2017) Support Effects in Single-Atom Platinum Catalysts for Electrochemical Oxygen Reduction. ACS Catalysis, 7, 1301-1307.
https://doi.org/10.1021/acscatal.6b02899
[18]  Kim, J.H., Shin, D., Lee, J., Baek, D.S., Shin, T.J., Kim, Y.-T., Jeong, H.Y., Kwak, J.H., Kim, H. and Joo, S.H. (2020) A General Strategy to Atomically Dispersed Precious Metal Catalysts for Unravelling Their Catalytic Trends for Oxygen Reduction Reaction. ACS Nano, 14, 1990-2001.
https://doi.org/10.1021/acsnano.9b08494
[19]  Shen, R., Chen, W., Peng, Q., Lu, S., Zheng, L., Cao, X., Wang, Y., Zhu, W., Zhang, J., Zhuang, Z., Chen, C., Wang, D. and Li, Y. (2019) High-Concentration Single Atomic Pt Sites on Hollow CuSx for Selective O2 Reduction to H2O2 in Acid Solution. Chem, 5, 2099-2110.
https://doi.org/10.1016/j.chempr.2019.04.024
[20]  Ichiro, Y., Takeshi, O., Sakae, T. and Kiyoshi, O. (2003) Direct and Continuous Production of Hydrogen Peroxide with 93% Selectivity Using a Fuel-Cell System. Angewandte Chemie International Edition, 42, 3653-3655.
https://doi.org/10.1002/anie.200351343
[21]  Chen, S., Chen, Z., Siahrostami, S., Kim, T.R. and Bao, Z. (2017) Defective Carbon-Based Materials for the Electrochemical Synthesis of Hydrogen Peroxide. ACS Sustainable Chemistry & Engineering, 6, 311-317.
https://doi.org/10.1021/acssuschemeng.7b02517
[22]  Sa, Y.J., Kim, J.H. and Joo, S.H. (2019) Active Edge-Site-Rich Carbon Nanocatalysts with Enhanced Electron Transfer for Efficient Electrochemical Hydrogen Peroxide Production. Angewandte Chemie International Edition, 131, 1112-1117.
https://doi.org/10.1002/ange.201812435
[23]  Chen, Z., Chen, S., Siahrostami, S., Chakthranont, P., Hahn, C., Nordlund, D., Dimosthenis, S., N?rskov, J. K., Bao, Z. and Jaramillo, T.F. (2017) Development of a Reactor with Car-bon Catalysts for Modular-Scale, Low-Cost Electrochemical Generation of H2O2. Reaction Chemistry & Engineering, 2, 239-245.
https://doi.org/10.1039/C6RE00195E
[24]  Wang, C., Kim, J., Tang, J., Kim, M., Lim, H., Malgras, V., You, J., Xu, Q., Li, J. and Yamauchi, Y. (2020) New Strategies for Novel MOF-Derived Carbon Materials Based on Nanoarchitectures. Chem, 6, 19-40.
https://doi.org/10.1016/j.chempr.2019.09.005
[25]  Liu, Y., Quan, X., Fan, X., Wang, H. and Chen, S. (2015) High-Yield Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction by Hierarchically Porous Carbon. An-gewandte Chemie International Edition, 54, 6837-6841.
https://doi.org/10.1002/anie.201502396
[26]  Zhang, J., Xu, Z., Mai, W., Min, C., Zhou, B., Shan, M., Li, Y., Yang, C., Wang, Z. and Qian, X. (2013) Improved Hydrophilicity, Permeability, Antifouling and Mechanical Performance of PVDF Composite Ultrafiltration Membranes Tailored by Oxidized Low-Dimensional Carbon Nanomaterials. Journal of Materials Chemistry A, 1, 3101-3111.
https://doi.org/10.1039/c2ta01415g
[27]  Lu, Z., Chen, G., Siahrostami, S., Chen, Z. and Cui, Y. (2018) High-Efficiency Oxygen Reduction to Hydrogen Peroxide Catalysed by Oxidized Carbon Materials. Nature Catalysis, 1, 156-162.
https://doi.org/10.1038/s41929-017-0017-x
[28]  Xia, C., Xia, Y., Zhu, P., Fan, L. and Wang, H. (2019) Direct Electrosynthesis of Pure Aqueous H2O2 Solutions up to 20% by Weight Using a Solid Electrolyte. Science, 366, 226-231.
https://doi.org/10.1126/science.aay1844
[29]  Xiao, X., Wang, T., Bai, J., Li, F., Ma, T. and Chen, Y. (2018) En-hancing the Selectivity of H2O2 Electrogeneration by Steric Hindrance Effect. ACS Applied Materials & Interfaces, 10, 42534-42541.
https://doi.org/10.1021/acsami.8b17283
[30]  Kim, H.W., Ross, M.B., Kornienko, N., Zhang, L., Guo, J., Yang, P. and Mccloskey, B.D. (2018) Efficient Hydrogen Peroxide Generation Using Reduced Graphene Oxide-Based Oxygen Reduction Electrocatalysts. Nature Catalysis, 1, 282-290.
https://doi.org/10.1038/s41929-018-0044-2
[31]  Fellinger, T.-P., Hasché, F., Strasser, P. and Antonietti, M. (2012) Mesoporous Nitrogen-Doped Carbon for the Electrocatalytic Synthesis of Hydrogen Peroxide. Journal of the American Chemical Society, 134, 4072-4075.
https://doi.org/10.1021/ja300038p
[32]  Sun, Y., Sinev, I., Ju, W., Bergmann, A., Dresp, S.R., Ku?Hl, S., Spo?Ri, C., Schmies, H., Wang, H. and Bernsmeier, D. (2018) Efficient Electrochemical Hydrogen Peroxide Production from Mo-lecular Oxygen on Nitrogen-Doped Mesoporous Carbon Catalysts. ACS Catalysis, 8, 2844-2856.
https://doi.org/10.1021/acscatal.7b03464
[33]  Liu, T., Wang, K., Song, S., Brouzgou, A., Tsiakaras, P. and Wang, Y. (2016) New Electro-Fenton Gas Diffusion Cathode Based on Nitrogen-Doped Graphene@Carbon Nanotube Compo-site Materials. Electrochimica Acta, 194, 228-238.
https://doi.org/10.1016/j.electacta.2015.12.185
[34]  Zhao, K., Su, Y., Quan, X., Liu, Y., Chen, S. and Yu, H. (2018) Enhanced H2O2 Production by Selective Electrochemical Reduction of O2 on Fluorine-Doped Hierarchically Porous Carbon. Journal of Catalysis, 357, 118-126.
https://doi.org/10.1016/j.jcat.2017.11.008
[35]  Monte-Pe?Rez, I.S., Kundu, S., Chandra, A., Craigo, K.E., Chernev, P., Kuhlmann, U., Dau, H., Hildebrandt, P., Greco, C. and Van Stappen, C. (2017) Temperature Dependence of the Cat-alytic Two- versus Four-Electron Reduction of Dioxygen by a Hexanuclear Cobalt Complex. Journal of the American Chemical Society, 139, 15033-15042.
https://doi.org/10.1021/jacs.7b07127
[36]  Siahrostami, S., Bj?rketun, M.E., Strasser, P., Greeley, J. and Rossmeisl, J. (2013) Tandem Cathode for Proton Exchange Membrane Fuel Cells. Physical Chemistry Chemical Physics, 15, 9326-9334.
https://doi.org/10.1039/c3cp51479j
[37]  Sun, S., Jiang, N. and Xia, D. (2011) Density Functional Theory Study of the Oxygen Reduction Reaction on Metalloporphyrins and Metallophthalocyanines. The Journal of Physical Chemistry C, 115, 9511-9517.
https://doi.org/10.1021/jp101036j
[38]  Murayama, T., Tazawa, S., Takenaka, S. and Yamanaka, I. (2011) Catalytic Neutral Hydrogen Peroxide Synthesis from O2 and H2 by PEMFC Fuel. Catalysis Today, 164, 163-168.
https://doi.org/10.1016/j.cattod.2010.10.102
[39]  Gao, J., Yang, H.B., Huang, X., Hung, S.-F., Cai, W., Jia, C., Miao, S., Chen, H.M., Yang, X., Huang, Y., Zhang, T. and Liu, B. (2020) Enabling Direct H2O2 Production in Acidic Media through Rational Design of Transition Metal Single Atom Catalyst. Chem, 6, 658-674.
https://doi.org/10.1016/j.chempr.2019.12.008
[40]  Sun, Y., Silvioli, L., Sahraie, N. R., Ju, W., Li, J., Zitolo, A., Li, S., Bagger, A., Arnarson, L., Wang, X., Moeller, T., Bernsmeier, D., Rossmeisl, J., Jaouen, F. and Strasser, P. (2019) Activity-Selectivity Trends in the Electrochemical Production of Hydrogen Peroxide over Single-Site Met-al-Nitrogen-Carbon Catalysts. Journal of the American Chemical Society, 141, 12372-12381.
https://doi.org/10.1021/jacs.9b05576
[41]  Li, B.Q., Zhao, C.X., Liu, J.N. and Zhang, Q. (2019) Electrosynthesis of Hydrogen Peroxide Synergistically Catalyzed by Atomic Co-Nx-C Sites and Oxygen Functional Groups in No-ble-Metal-Free Electrocatalysts. Advanced Materials, 31, Article ID: 1808173.
https://doi.org/10.1002/adma.201808173
[42]  Jiang, K., Back, S., Akey, A.J., Xia, C., Hu, Y., Liang, W., Schaak, D., Stavitski, E., N?rskov, J.K., Siahrostami, S. and Wang, H. (2019) Highly Selective Oxygen Reduction to Hydrogen Peroxide on Transition Metal Single Atom Coordination. Nature Communications, 10, Article No. 3997.
https://doi.org/10.1038/s41467-019-11992-2
[43]  Shen, H., Pan, L., Thomas, T., Wang, J., Guo, X., Zhu, Y., Luo, K., Du, S., Guo, H., Hutchings, G.J., Attfield, J.P. and Yang, M. (2020) Selective and Continuous Electrosynthesis of Hydrogen Peroxide on Nitrogen-Doped Carbon Supported Nickel. Cell Reports Physical Science, 1, Article ID: 100255.
https://doi.org/10.1016/j.xcrp.2020.100255
[44]  Wu, Z., Wang, T., Zou, J.-J., Li, Y. and Zhang, C. (2022) Amor-phous Nickel Oxides Supported on Carbon Nanosheets as High-Performance Catalysts for Electrochemical Synthesis of Hydrogen Peroxide. ACS Catalysis, 12, 5911-5920.
https://doi.org/10.1021/acscatal.2c01829
[45]  Barros, W.R., Wei, Q., Zhang, G., Sun, S., Lanza, M.R. and Tavares, A.C. (2015) Oxygen Reduction to Hydrogen Peroxide on Fe3O4 Nanoparticles Supported on Printex Carbon and Gra-phene. Electrochimica Acta, 162, 263-270.
https://doi.org/10.1016/j.electacta.2015.02.175
[46]  Yuan, Q., Zhao, J., Mok, D.H., Zheng, Z., Ye, Y., Liang, C., Zhou, L., Back, S. and Jiang, K. (2022) Electrochemical Hydrogen Peroxide Synthesis from Selective Oxygen Reduction over Metal Selenide Catalysts. Nano Letters, 22, 1257-1264.
https://doi.org/10.1021/acs.nanolett.1c04420

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413