全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

浅谈线性代数在网络编码中的应用
The Application of Linear Algebra in Network Coding

DOI: 10.12677/AE.2022.1211646, PP. 4231-4235

Keywords: 矩阵,子空间,编码
Matrix
, Subspace, Coding

Full-Text   Cite this paper   Add to My Lib

Abstract:

线性代数是普通高校理工科的一门公共课,许多学生在学习完本课程后,未能很好地将相关知识与实际问题之间建立起联系。本文主要介绍利用线性代数课程中的矩阵和线性空间等相关知识,构造在网络编码中有着重要作用的子空间码。从而让学生更好的理解线性代数在实际问题中的应用,引导学生将所学知识运用到实际中去。
Linear algebra is a common required course in science and engineering departments in universities. However, many students are not very well establish the relationship between learned knowledge and practical question after learning this course. This paper mainly introduces the application of linear algebra to subspace codes, which play an important role in the network coding, and also guides the students to apply learned knowledge to practice question.

References

[1]  Ahlswede, R., Cai, N., Li, S. and Yeung, R.W. (2000) Network Information Flow. IEEE Transactions on Information Theory, 46, 1204-1216.
https://doi.org/10.1109/18.850663
[2]  Médard, M., Koetter, R., Karger, D.R., Effros, M., Shi, J. and Leong B. (2006) A Random Linear Network Coding Approach to Multicast. IEEE Transactions on Infor-mation Theory, 52, 4413-4430.
https://doi.org/10.1109/TIT.2006.881746
[3]  K?tter, R. and Kschischang, F.R. (2008) Coding for Errors and Erasures in Random Network Coding. IEEE Transactions on Information Theory, 54, 3579-3591.
https://doi.org/10.1109/TIT.2008.926449
[4]  吴建荣, 谷建胜. 线性代数[M]. 北京: 高等教育出版社, 2009.
[5]  丘维声. 简明线性代数[M]. 北京: 北京大学出版社, 2002.
[6]  Delsarte, P. (1978) Bilinear Forms over a Finite Field, with Applications to Coding Theory. Journal of Combinatorial Theory A, 25, 226-241.
https://doi.org/10.1016/0097-3165(78)90015-8
[7]  Gabidulin, è.M. (1985) Theory of Codes with Maximum Rank Distance. Problemy Peredachi Informatsii, 21, 3-16.
[8]  Silva, D., Kschischang, F.R. and K?tter, R. (2008) A Rank-Metric Approach to Error Control in Random Network Coding. IEEE Transactions on Information Theory, 54, 3951-3967.
https://doi.org/10.1109/TIT.2008.928291
[9]  Liu, S., Chang, Y. and Feng, T. (2020) Parallel Multi-level Constructions for Constant Dimension Codes. IEEE Transactions on Information Theory, 66, 6884-6897.
https://doi.org/10.1109/TIT.2020.3004315
[10]  Niu, Y., Yue, Q. and Huang, D. (2022) New Constant Dimension Subspace Codes from Parallel Linkage Construction and Multilevel Construction. Cryptography and Communications, 14, 201-214.
https://doi.org/10.1007/s12095-021-00504-z
[11]  冯克勤. 纠错码的代数理论[M]. 北京: 清华大学出版社, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133