全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Markov链与SARIMAX模型的混合动力车辆速度预测
Speed Prediction of Hybrid Electric Vehicle Based on Markov Chain and SARIMAX Model

DOI: 10.12677/SA.2022.115134, PP. 1287-1301

Keywords: 马尔科夫链,SARIMAX模型,预测对比
Markov Chain
, SARIMAX Model, Forecast Comparison

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对车辆速度预测较为复杂的问题,提出将马尔可夫模型与SARIMAX模型引入车辆速度预测方法之中。基于美国密歇根州安阿伯市的车辆数据,将汽车运行的速度数据处理为时间序列数据之后建立模型进行预测。详细对比分析了马尔可夫模型与SARIMAX模型在四种不同工况(低速、中速、中高速、高速)与不同预测长度(5个、10个、15个、20个)下预测车速的准确程度。经过研究可以得出:在低速工况下,利用SARIMAX模型和马尔可夫模型对车速进行短期预测或长期预测都是不错的选择;在高速工况下,长期预测应选择马尔可夫模型,短期预测两个模型都能获得较好的效果;在中速和中高速工况下,长期预测应选择SARIMAX模型,中速工况下的车速短期预测选择SARIMAX模型更合适,中高速工况下的车速短期预测,两种模型的预测效果欠佳。
Aiming at the complicated problem of vehicle speed prediction, Markov model and SARIMAX model are introduced to predict the vehicle velocity. Based on vehicle data of Ann Arbor, Michigan, USA, this paper processes the vehicle velocity data into time series data and then substitutes them into two models. The accuracy of Markov model and SARIMAX model in predicting vehicle speed under four different working conditions (low speed, medium speed, medium high speed and high speed) and different prediction lengths (5, 10, 15 and 20) is compared and analyzed in detail. Through practical research, it can be concluded that under high-speed conditions, Markov model is selected for long-term prediction, and SARIMAX model and Markov model for short-term prediction can achieve better results; SARIMAX model is selected for long-term prediction under medium speed and medium high speed conditions. SARIMAX model is more suitable for short-term prediction of vehicle speed under medium speed conditions. For short-term prediction of vehicle speed under medium and high speed conditions, the prediction effects of the two models need to be improved.

References

[1]  李文茹. 城市汽车运行速度分布预测模型研究[J]. 吉林大学, 2018(6): 2-5.
[2]  管珊珊, 张益农. 汽车速度预测技术研究发展[J]. 计算机科学, 2017(10): 1-3.
[3]  解少博, 刘通, 李会灵. 基于马尔科夫链的并联PHEB预测型能量管理策略研究[J]. 汽车工程, 2018, 40(8): 871-877+911.
[4]  袁焕涛, 赵红, 潘广纯. 基于马尔科夫的混合动力汽车行驶车速预测研究[J]. 智能城市, 2021, 7(3): 18-22.
[5]  张良力, 祝贺, 吴超仲. 基于ARMA预测模型的交叉口车辆碰撞风险评估[J]. 交通运输系统工程与信息, 2015, 15(5): 239-245.
[6]  Guo, J., He, H. and Sun, C. (2019) ARIMA-Based Road Gradient and Vehicle Velocity Prediction for Hybrid Electric Vehicle Energy Management. IEEE Transactions on Vehicular Technology, 68, 5309-5320.
https://doi.org/10.1109/TVT.2019.2912893
[7]  Geunseob, O.H., LeBlanc, D.J. and Peng, H. (2020) Vehicle Energy Dataset (VED): A Large-Scale Dataset for Vehicle Energy Consumption Research. IEEE Transactions on Intelligent Transportation Systems, 23, 3302-3312.
https://doi.org/10.1109/TITS.2020.3035596
[8]  陈华友, 周礼刚, 刘金培. 统计预测与决策[M]. 北京: 科学出版社, 2018(6): 46-60.
[9]  夏丽. 基于ARIMA模型及回归分析的区域用电量预测方法研究[D]: [硕士学位论文]. 南京: 南京理工大学, 2013: 2-6.
[10]  孙义, 周陇陇. 基于Python的金融时间序列ARIMA模型教学[J]. 现代信息科技, 2021, 5(10): 192-195.
[11]  涂锦, 冷正兴, 刘丁毅. 基于EMD和神经网络的非线性时间序列预测方法[J]. 统计与决策, 2020(8): 1.
[12]  李潇俊, 唐攀. 基于技术分析、基本面分析和深度学习的股价预测[J]. 统计与决策, 2022(2): 2-5.
[13]  姜向荣. 时间序列分析与预测[M]. 北京: 科学出版社, 2020: 20-29.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133