|
时空可达性及其在交通数据分析中的一些应用研究
|
Abstract:
在评价交通服务系统中,时空可达性是重要考虑因素,基于时空可达性的交通数据分析,能为决策者在路段建设及公共交通路线设计方面提供合理意见,有助于提高出行者到活动地点的便利程度。本文首先针对城市基础交通网络,从时空棱柱理论框架中构建时空网络,考虑个体在起点及活动地点所受的时间约束及费用约束,构建基于时空可达性交通网络模型,并将该模型进行改进,应用于城市公共交通系统中。并针对模型特点,设计深度遍历算法,得到时空网络中所有的可行路径,从中选出最优解。为更好地适应大规模路网,又设计拉格朗日松弛算法,通过其耦合约束和难约束,将原问题分解为最短路问题及背包问题,并更新拉格朗日乘子协调各子问题。最后,以实际问题为例,验证了模型和算法的合理性。研究结果表明本文提出的模型能有效解决以个体出行需求为目标的交通网络设计问题。
In evaluating transportation system, space-time accessibility is an important factor. The transportation data analysis based on space-time accessibility can provide reasonable suggestions for policy-makers in road construction and public transportation route design, which will make it more convenient for travelers. We firstly focus on urban transportation network and build space-time network based on space-time prisms theories by considering the time constraint and cost constraint of traveler heading for destination, and finally building transportation network design models based on space-time-accessibility. Then the improved models are proposed and used to urban public transportation systems. Based on the models’ characteristics, we introduce the depth-first-search algorithm which can calculate all the possible routes in space-time networks and choose the best one from them. Largrangian relaxation algorithm is then designed to better adapt to large-scale road networks. And through the coupling constraints and hard constraints in the relaxation model, the original problem can be decomposed into the shortest-path problem and the knapsack problem, both of them can be solved by updating Largrangian multipliers. Finally, the rationality of the model and algorithm is verified by a practical example. The experimental results show that the proposed model can effectively solve the traffic network design problem aiming at individual travel demand.
[1] | 赵延峰. 新时期大城市骨干交通网络规划方法探索[C]//中国工程院土木, 水利与建筑工程学部, 中国城市规划学会城市交通规划学术委员会. 2010年中国大城市交通规划研讨会——中国城市交通规划2010年会论文集. 2010: 177-182. |
[2] | 许传忠, 刘杨, 李志. 由“车本位”到“人本位”——城市交通可持续发展探析[J]. 规划师, 2003(9): 80-81. |
[3] | 吴静, 邹强. 时空可达性研究现状分析[J]. 测绘科学, 2018, 43(12): 58-64. |
[4] | 吴凡, 石飞, 肖沛余, 于沛洋. 城市路网布局结构对公共交通出行的影响[J]. 南京工业大学学报(自然科学版), 2019, 41(4): 520-528. |
[5] | Hansen, W.G. (1959) How Accessibility Shapes Land Use. Journal of American Institute of Planners, 25, 73-76.
https://doi.org/10.1080/01944365908978307 |
[6] | Kwan, M.P. (1998) Space-Time and Integral Measures of Individual Accessibility: A Comparative Analysis Using a Point-Based Framework. Geographical Analysis, 30, 191-216. https://doi.org/10.1111/j.1538-4632.1998.tb00396.x |
[7] | H?gerstrand, T. (1970) What about People in Regional Science? Papers of the Regional Science Association, 24, 6-21.
https://doi.org/10.1007/BF01936872 |
[8] | Thill, J.C, and Horowitz, J.L. (1997) Modelling Non-Work Destination Choices with Choice Sets Defined by Travel-Time Constraints. In: Fischer, M.M. and Getis, A., Eds., Recent Developments in Spatial Analysis: Spatial Statistics, Behavioual Modelling and Computational Intelligence, Springer-Verlag, Berlin, 186-208.
https://doi.org/10.1007/978-3-662-03499-6_10 |
[9] | Thill, J.C, and Horowitz, J.L. (1997) Travel Time Constraints on Destination-Choice Sets. Geographical Analysis, 29, 108-123. https://doi.org/10.1111/j.1538-4632.1997.tb00951.x |
[10] | Weibull, J. (1976) An Axiomatic Approach to the Measurement of Accessibility. Regional Science & Urban Economics, 6, 357-379. https://doi.org/10.1016/0166-0462(76)90031-4 |
[11] | Baxter, R.S. and Lenzi, G. (1975) The Measurement of Relative Accessibility. Regional Studies, 9, 15-26.
https://doi.org/10.1080/09595237500185021 |
[12] | Wachs, M. and Kumagai, G. (1973) Physical Accessibility as a Social Indicator. Socio-Economic Planning Sciences, 7, 437-456. https://doi.org/10.1016/0038-0121(73)90041-4 |
[13] | 宋小冬, 钮心毅. 再论居民出行可达性的计算机辅助评价[J]. 城市规划汇刊, 2000(3): 18-22+75-79. |
[14] | 宋小冬, 廖雄赳. 基于GIS的空间相互作用模型在城镇发展研究中的应用[J]. 城市规划汇刊, 2003(3): 45-51+96. |
[15] | Clark, C., Wilson, F. and Bradley, J. (1969) Industrial Location and Economic Potential in Western Europe. Regional Studies, 3, 197-212. https://doi.org/10.1080/09595236900185201 |
[16] | Fu, X. and Lam, W. (2013) A Network Equilibrium Approach for Modelling Activity-Travel Pattern Scheduling Problems in Multi-Modal Transit Networks with Uncertainty. Transportation, 41, 37-55.
https://doi.org/10.1007/s11116-013-9470-9 |
[17] | 付晓, 李梦瑶, 陆欣, 蔡先华. 考虑行程时间不确定性的服务设施时空可达性度量[J]. 交通运输系统工程与信息, 2019, 19(2): 86-93. |
[18] | 胡继华, 钟广鹏. 地铁出行模式下的城市时空可达性研究[J]. 规划师, 2012, 28(1): 29-33. |
[19] | Miller, H. (1999) Measuring Space-Time Accessibility Benefits within Transportation Networks: Basic Theory and Computational Procedures. Geographical Analysis, 31, 187-212. https://doi.org/10.1111/gean.1999.31.1.187 |
[20] | 王亚飞, 袁辉, 陈碧宇, 李清泉, 万梦, 王家耀, 等. 行程时间不确定环境下地点可达性研究[J]. 武汉大学学报(信息科学版), 2019, 44(11): 1723-1729. |
[21] | Taylor, M.A.P. (2008) Critical Transport Infrastructure in Urban Areas: Impact of Traffic Incidents Assessed Using Accessibility-Based Network Vulnerability Analysis. Growth and Change, 39, 593-616.
https://doi.org/10.1111/j.1468-2257.2008.00448.x |
[22] | Cormen, T., Leiserson, C. 算法导论[M]. 北京: 机械工程出版社, 2013. |
[23] | 罗纳德·拉丁. 运筹学[M]. 北京: 机械工业出版社, 2018. |