全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

小麦DUF642基因全基因组鉴定及转录组分析
Genome-Wide Identification and Transcriptome Analysis of DUF642 Gene Family in Wheat

DOI: 10.12677/BR.2022.116077, PP. 630-640

Keywords: 小麦,DUF642,全基因组鉴定,转录组分析
Wheat
, DUF642, Genome-Wide Identification, Transcriptome Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

【目的】分析小麦细胞壁相关蛋白DUF642 (Domain of Unknown Function 642)基因家族的特点。【方法】在小麦全基因组内对DUF642家族成员进行鉴定,并且对其进化关系、基因结构、蛋白特性、保守基序、顺式作用元件和转录组信息进行系统分析。【结果】TaDUF642家族中共有34个家族成员,多物种系统进化树分析、基因结构和保守基序显示,TaDUF642家族成员在进化上具有较高的保守性;蛋白特征显示,大多数TaDUF642蛋白为酸性蛋白质和亲水性蛋白质;亚细胞定位预测显示,TaDUF642大多定位在叶绿体;转录组数据分析显示,TaDUF642基因广泛参与小麦的生长发育和非生物胁迫,并且与禾谷镰刀菌、条锈菌和白粉菌的侵染紧密相关。【结论】本研究精准鉴定了小麦TaDUF642基因家族成员及其表达模式,为小麦在抗逆方面的遗传改良提供了理论依据。
[Objective] Further analyze the properties of DUF642 (Domain of Unknown Function 642) gene family related cell wall in wheat. [Method] The DUF642 family members were identified throughout the whole wheat genome, and their evolutionary relationships, gene structure, protein characteristics, conserved motifs, cis-acting elements and transcriptome information were systematically analyzed. [Result] There were 34 family members in TaDUF642 family. Phylogenetic tree analysis, gene structure and conserved motifs showed that TaDUF642 family members were highly conserved in evolution. Protein characteristics showed most of the TaDUF642 proteins were acidic and hydrophilic. Subcellular localization prediction indicated that TaDUF642 was mostly localized in chloroplast. The analysis of transcriptome data suggested that TaDUF642 genes is widely involved in the growth and development and abiotic stress of wheat, and is closely related to the infection of Fusarium graminis, stripe rust and powdery mildew. [Conclusion] Members of the TaDUF642 genes family and their expression patterns were accurately identified in wheat, which provided a theoretical basis for the genetic improvement of wheat resistance to stress.

References

[1]  刘志勇, 王道文, 张爱民, 等. 小麦育种行业创新现状与发展趋势[J]. 植物遗传资源学报, 2018, 19(3): 430-434.
[2]  Vázquez-Lobo, A., Roujol, D., Zu?iga-Sánchez, E., et al. (2012) The Highly Conserved Spermatophyte Cell Wall DUF642 Protein Family: Phylogeny and First Evidence of Interaction with Cell Wall Polysaccharides in Vitro. Molecular Phylogenetics and Evolution, 63, 510-520.
https://doi.org/10.1016/j.ympev.2012.02.001
[3]  Cruz-Valderrama, J.E., Gómez-Maqueo, X., Salazar-Iribe, A., et al. (2019) Overview of the Role of Cell Wall DUF642 Proteins in Plant Development. International Journal of Molecular Sciences, 20, Article No. 3333.
https://doi.org/10.3390/ijms20133333
[4]  Salazar-Irib, A., Zú?iga-Sánchez, E., Gamboa-deBuen, A., et al. (2017) Cell Wall Localization of Two DUF642 Proteins, BIIDXI and TEEBE, during Meloidogyne incognita Early Inoculation. The Plant Pathology Journal, 33, 614-618.
https://doi.org/10.5423/PPJ.NT.05.2017.0101
[5]  Zú?iga-Sánchez, E., Soriano, D., Martínez-Barajas, E., et al. (2014) BIIDXI, the At4g32460 DUF642 Gene, Is Involved in Pectin Methyl Esterase Regulation during Arabidopsis thaliana Seed Germination and Plant Development. BMC Plant Biology, 14, Article No. 338.
https://doi.org/10.1186/s12870-014-0338-8
[6]  Salazar-Iribe, A., Agredano-Moreno, L.T., Zú?iga-Sánchez, E., et al. (2016) The Cell Wall DUF642 At2g41800 (TEB) Protein Is Involved in Hypocotyl Cell Elongation. Plant Science, 253, 206-214.
https://doi.org/10.1016/j.plantsci.2016.10.007
[7]  Palmeros-Suárez, P.A., Massange-Sánchez, J.A., Sán-chez-Segura, L., et al. (2017) AhDGR2, an Amaranth Abiotic Stress-Induced DUF642 Protein Gene, Modifies Cell Wall Structure and Composition and Causes Salt and ABA Hyper-Sensibility in Transgenic Arabidopsis. Planta, 245, 623-640.
https://doi.org/10.1007/s00425-016-2635-y
[8]  王晓睿, 胡琴, 杜雪竹, 等. 水稻DUF642家族基因的鉴定及在非生物逆境中的表达分析[J]. 湖北大学学报(自然科学版), 2022, 44(1): 14-23.
[9]  刘天宇, 杨永娟, 赵卓, 等. 玉米DUF642基因家族的鉴定和分析[J]. 分子植物育种, 2018, 16(21): 6888-6898.
[10]  Hu, J., Barlet, X., Deslandes, L., et al. (2008) Transcriptional Responses of Arabidopsis thaliana during Wilt Disease Caused by the Soil-Borne Phytopathogenic Bacterium, Ralstonia solanacearum. PLOS ONE, 3, e2589.
https://doi.org/10.1371/journal.pone.0002589
[11]  Depuydt, S., Trenkamp, S., Elftieh, S., et al. (2009) An Integrated Genomics Approach to Define Niche Establishment by Rhodococcus fascians. Plant Physiology, 149, 1366-1386.
https://doi.org/10.1104/pp.108.131805
[12]  解美霞, 杨君, 王国宁, 等. 基于表达谱分析陆地棉DUF642基因家族抗逆功能[J]. 棉花学报, 2019, 31(6): 493-504.
[13]  Xie, X.Q. and Wang, Y.J. (2016) VqDUF642, a Gene Isolated from the Chinese Grape Vitisquinquangularis, Is Involved in Berry Development and Pathogen Resistance. Planta, 244, 1075-1094.
https://doi.org/10.1007/s00425-016-2569-4
[14]  Punta, M., Coggill, P.C., Eberhardt, R.Y., et al. (2012) The Pfam Protein Families Database. Nucleic Acids Research, 40, 290-301.
https://doi.org/10.1093/nar/gkr1065
[15]  Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice. Nucleic Acids Research, 22, 4673-4680.
https://doi.org/10.1093/nar/22.22.4673
[16]  Kumar, S., Stecher, G. and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874.
https://doi.org/10.1093/molbev/msw054
[17]  Wilkins, M.R., Gasteiger, E., Bairoch, A., et al. (1999) Protein Identification and Analysis Tools in the ExPASyserver. Methods in Molecular Biology (Clifton, N.J.), 112, 531-552.
[18]  Chou, K.C. and Shen, H.B. (2010) Cell-PLoc 2.0: An Improved Package of Web-Servers for Predicting Subcellular Localization of Proteins in Various Organisms. Natural Science, 2, 1090-1103.
https://doi.org/10.4236/ns.2010.210136
[19]  Bailey, T.L., Boden, M., Buske, F.A., et al. (2009) MEME SUITE: Tools for Motif Discovery and Searching. Nucleic Acids Research, 37, W202-W208.
https://doi.org/10.1093/nar/gkp335
[20]  Chen, C.J., Chen, H., Zhang, Y., et al. (2020) TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Molecular Plant, 13, 1194-1202.
https://doi.org/10.1016/j.molp.2020.06.009
[21]  Zhu, Y.X., Yang, L., Liu, N., et al. (2019) Genome-Wide Identification, Structure Characterization, and Expression Pattern Profiling of Aquaporin Gene Family in Cucumber. BMC Plant Biology, 19, Article No. 345.
https://doi.org/10.1186/s12870-019-1953-1
[22]  Trapnell, C., Roberts, A., Goff, L., et al. (2012) Differential Gene and Transcript Expression Analysis of RNA-seq Experiments with TopHat and Cufflinks. Nature Protocols, 7, 562-578.
https://doi.org/10.1038/nprot.2012.016
[23]  IWGSC, Rudi, A., Kelly, E., et al. (2018) Shifting the Limits in Wheat Research and Breeding Using a Fully Annotated Reference Genome. Science, 361, eaar7191.
[24]  Yamaji, N., Huang, C.F., Nagao, S., et al. (2009) A Zinc Finger Transcription Factor ART1 Regulates Multiple Genes Implicated in Aluminum Tolerance in Rice. The Plant Cell, 21, 3339-3349.
https://doi.org/10.1105/tpc.109.070771
[25]  Gao, Y.S., Badejo, A.A., Sawa, Y., et al. (2012) Analysis of Two L-Galactono-1,4-lactone-responsive Genes with Complementary Expression During the Development of Arabidopsis thaliana. Plant & Cell Physiology, 53, 592-601.
https://doi.org/10.1093/pcp/pcs014

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133