全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

三峡水库运用后长江中游河床冲淤调整特征流量变化对比研究
Comparative Study on the Variations in Characteristic Discharges for Channel Morphological Adjustments at the Middle Yangtze River after the Impoundment of the Three Gorges Reservoir

DOI: 10.12677/JWRR.2022.115052, PP. 478-491

Keywords: 造床流量,有效流量,平滩流量,长江中游,三峡水库,重现期
Dominant Discharge
, Effective Discharge, Bank-Full Discharge, Middle Yangtze River, Three Gorges Reservoir, Recurrence Period

Full-Text   Cite this paper   Add to My Lib

Abstract:

为对比分析三峡水库下游河床冲淤调整特征流量时空变化规律,选取1981~2016年长江中游宜昌、枝城、沙市、监利、螺山和汉口6个主要水文站实测资料计算造床流量、有效流量和平滩流量,并分析特征流量变化的统计特性。结果表明,三峡水库蓄水运用后,不同特征流量发生了差异性调整,造床流量呈一致减小的变化趋势,有效流量与平滩流量的变化呈明显的空间分异性;与之相应,不同特征流量在累计水沙输移占比、流量频率以及流量重现期等方面的变化有所不同。蓄水前后,各水文站造床流量累计流量频率变化均较小,有效流量累计径流占比、累计输沙占比和累计流量频率在蓄水后一致增加,平滩流量与1.5年重现期流量大致相当。
To explore and compare the temporal-spatial variation rules of characteristic discharges for channel morphological adjustments downstream of the Three Gorges Reservoir (TGR), the field data of six main hydrometric stations at the Middle Yangtze River, i.e., Yichang, Zhicheng, Shashi, Jianli, Luoshan and Hankou, were used for the calculation of dominant discharge, effective discharge and bank-full discharge and analysis of their statistic characteristics. The results show that after the impoundment of TGR, different characteristic discharges changed differently: The dominant discharges within the studied reaches showed a consistent decreasing trend, while the effective discharge and bank-full discharge variations behaved an obviously spatial differentiation. Accordingly, the changes of accumulative flow runoff percentage, accumulative sediment runoff percentage, flow frequency and flow recurrence period for different characteristic discharges were also different: After the impoundment of TGR, the accumulative flow frequency for dominant discharge at each hydrometric station changed very slightly, while the accumulative flow runoff percentage, accumulative sediment runoff percentage and accumulative flow frequency for effective discharge increased consistently, and the bank-full discharge at each hydrometric station was roughly equivalent to the corresponding 1.5-year recurrence period discharge.

References

[1]  代双亮, 韩剑桥, 曹绮欣, 李聪. 渭河干流下游造床流量与有效流量的时空变化特征[J]. 水土保持研究, 2020, 27(6): 94-99. DAI Shuangliang, HAN Jianqiao, CAO Qixin and LI Cong. Spatial and temporal distribution of dominant discharge and effective discharge in the lower reaches of Weihe River. Research of Soil and Water Conservation, 2020, 27(6): 94-99. (in Chinese)
[2]  杨云平, 李明, 刘万利, 朱玉德, 杨丽洁, 余文钧. 长江荆江河段滩槽演变与航道水深资源提升关系[J]. 水科学进展, 2022, 33(2): 240-252. YANG Yunping, LI Ming, LIU Wanli, ZHU Yude, YANG Lijie and YU Wenjun. Study on the relationship between beach trough evolution and navigation obstruction characteristics in Jingjiang reach of the Yangtze River. Advances in Water Science, 2022, 33(2): 240-252. (in Chinese)
[3]  张为, 吴美琴, 李思璇, 袁晶, 高宇. 三峡水库蓄水后城陵矶至九江段河道冲淤调整机理[J]. 水科学进展, 2020, 31(2): 162-171. ZHANG Wei, WU Meiqin, LI Sixuan, YUAN Jing and GAO Yu. Mechanism of adjustment of scouring and silting of Chenglingji-Jiujiang reach in the middle reaches of the Yangtze River after impoundment of the Three Gorges Dam. Advances in Water Science, 2020, 31(2): 162-171. (in Chinese)
[4]  韩剑桥. 三峡水库下游纵向水沙输移与河道形态相互作用机制研究[D]: [博士学位论文]. 武汉: 武汉大学, 2015. HAN Jianqiao. The interaction mechanism between longitudinal water and sediment transport and channel morphology in the downstream of Three Gorges Reservoir. Doctor’s Thesis, Wuhan: Wuhan University, 2015. (in Chinese)
[5]  WOLMAN, M. G., MILLER, J. P. Magnitude and frequency of forces in geomorphic process. The Journal of Geology, 1960, 68(1): 54-74.
https://doi.org/10.1086/626637
[6]  NASH, D. B. Effective sediment-transporting discharge from magnitude-frequency analysis. The Journal of Geology, 1994, 102(1): 79-95.
https://doi.org/10.1086/629649
[7]  ASHMORE, P. E., DAY, T. J. Effective discharge for sediment transport in streams of the Saskatchewan River Basin. Water Resources Research, 1988, 24(6): 864-870.
https://doi.org/10.1029/WR024i006p00864
[8]  MA, Y., HUANG, H. Q., XU, J., BRIERLEY, G. J. and YAO, Z. Variability of effective discharge for suspended sediment transport in a large semi-arid river basin. Journal of Hydrology, 2010, 388(3-4): 357-369.
https://doi.org/10.1016/j.jhydrol.2010.05.014
[9]  陈建国, 胡春宏, 董占地, 刘大滨. 黄河下游河道平滩流量与造床流量的变化过程研究[J]. 泥沙研究, 2006(5): 10-16. CHEN Jianguo, HU Chunhong, DONG Zhandi and LIU Dabin. Change of bank-full and bed-forming discharges in the lower Yellow River. Journal of Sediment Research, 2006(5): 10-16. (in Chinese)
[10]  张红武, 张清, 江恩惠. 黄河下游河道造床流量的计算方法[J]. 泥沙研究, 1994(4): 50-55. ZHANG Hongwu, ZHANG Qing and JIANG Enhui. Calculation of dominated discharge in the lower Yellow River. Journal of Sediment Research, 1994(4): 50-55. (in Chinese)
[11]  WILLIAMS, G. P. Bank-full discharge of rivers. Water Resources Research, 1978, 14(6): 1141-1154.
https://doi.org/10.1029/WR014i006p01141
[12]  夏军强, 吴保生, 王艳平, 李文文. 黄河下游河段平滩流量计算及变化过程分析[J]. 泥沙研究, 2010(2): 6-14. XIA Junqiang, WU Baosheng, WANG Yanping and LI Wenwen. Estimating the bank-full discharge in the lower Yellow River and analysis of its variation processes. Journal of Sediment Research, 2010(2): 6-14. (in Chinese)
[13]  闫金波, 唐庆霞, 邹涛. 三峡坝下游河道造床流量与水流挟沙力的变化[J]. 长江科学院院报, 2014, 31(2): 114-118. YAN Jinbo, TANG Qingxia and ZOU Tao. Variation of dominant discharge and sediment-carrying capacity of flow in the downstream of Three Gorges Reservoir. Journal of Yangtze River Scientific Research Institute, 2014, 31(2): 114-118. (in Chinese)
[14]  孙昭华, 周炜兴, 周坤, 周歆玥, 陈立, 李义天. 江湖水沙输移与长江中下游造床流量的关系[J]. 水利学报, 2021, 52(5): 521-534. SUN Zhaohua, ZHOU Weixing, ZHOU Kun, ZHOU Xinyue, CHEN Li and LI Yitian. Relationship between the characteristics of water-sediment transportation in river-lake system and the channel forming discharge of the middle and lower Yangtze River. Journal of Hydraulic Engineering, 2021, 52(5): 521-534. (in Chinese)
[15]  张为, 高宇, 许全喜, 袁晶. 三峡水库运用后长江中下游造床流量变化及其影响因素[J]. 水科学进展, 2018, 29(3): 331-338. ZHANG Wei, GAO Yu, XU Quanxi and YUAN Jing. Changes in dominant discharge and their influential factors in the middle and lower reaches of Yangtze River after the Three Gorges Dam impoundment. Advances in Water Science, 2018, 29(3): 331-338. (in Chinese)
[16]  XIA, J., ZHOU, M., LIN, F., DENG, S. and LU, J. Variation in reach-scale bankfull discharge of the Jingjiang Reach undergoing upstream and downstream boundary controls. Journal of Hydrology, 2017, 547: 534-543.
https://doi.org/10.1016/j.jhydrol.2017.02.026
[17]  CHEN, F., CHEN, L., ZHANG, W., HAN, J. Q., WANG, J. Z. and YUAN, J. Responses of channel morphology to flow-sediment variations after dam construction: A case study of the Shashi Reach, middle Yangtze River. Hydrology Research, 2019, 50(5): 1359-1375.
https://doi.org/10.2166/nh.2019.066
[18]  LENZI, M. A., MAO, L. and COMITI, F. Effective discharge for sediment transport in a mountain river: Computational approaches and geomorphic effectiveness. Journal of Hydrology, 2006, 326: 257-276.
https://doi.org/10.1016/j.jhydrol.2005.10.031
[19]  SINGH, B., RAJPOUROHT, D., VASISHTH, A. and SINGH, J. Probability analysis for estimation of annual one day maximum rainfall of Jhalarapatan Area of Rajasthan. Plant Arch, 2012, 12(2): 1093-1100.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133