全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于人工智能与随机场的水位图像识别方法研究
Study on Water Level Image Recognition Method Based on Artificial Intelligence and Random Field

DOI: 10.12677/JWRR.2022.115049, PP. 445-457

Keywords: 水位监测,图像识别,语义分割,注意力机制,条件随机场
Water Level Monitoring
, Image Recognition, Semantic Segmentation, Attention Mechanism, Conditional Random Field

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提升基于视频图像的自动水位监测的准确度和环境稳定性,提出一种基于人工智能与随机场的水位图像智能识别方法。在Deeplabv3+语义分割模型的基础上引入注意力机制和条件随机场,优化水位线识别,结合摄像头标定结果插值计算水位值。设置3组不同条件的现场水位识别试验,结果表明所提出的改进算法识别结果更精确,具备环境适应性,基本满足水文测验要求。
In order to improve the accuracy and robustness of automatic water level monitoring based on video images, a video water level intelligent identification method based on artificial intelligence and random field is proposed. Based on Deeplabv3+ semantic segmentation model, attention mechanism and conditional random field are introduced to optimize water level recognition, and the water level value is calculated by interpolation combining with camera calibration results. Three groups of water level identification experiments with different conditions are set up. The results show that the proposed improved algorithm is more accurate, has environmental adaptability, and basically meets the requirements of hydrological test.

References

[1]  张应辉. 浅谈山区型河流水位计的选型[J]. 水利水文自动化, 2008(4): 45-46. ZHANG Yinghui. A brief discussion on model selection of water level gauge for mountain river. Water Resources Informatization, 2008(4): 45-46. (in Chinese)
[2]  安全, 范瑞琪. 常用水位传感器的比较和选择[J]. 水利信息化, 2014(3): 52-54+60. AN Quan, FAN Ruiqi. Comparison and selection of common water level sensors. Water Resources Informatization, 2014(3): 52-54+60. (in Chinese)
[3]  YU, J., HAHN, H. Remote detection and monitoring of a water level using narrow band channel. Journal of Information Science and Engineering, 2010, 26(1): 71-82.
[4]  张振, 周扬, 王慧斌, 高红民, 刘海韵. 标准双色水尺的图像法水位测量[J]. 仪器仪表学报, 2018, 39(9): 236-245. ZHANG Zhen, ZHOU Yang, WANG Huibin, GAO Hongmin and LIU Haiyun. Image-based water level measurement with standard bicolor staff gauge. Chinese Journal of Scientific Instrument, 2018, 39(9): 236-245. (in Chinese)
[5]  周衡, 仲思东. 基于视频图像的水位监测方法研究[J]. 半导体光电, 2019, 40(3): 390-394+400. ZHOU Heng, ZHONG Sidong. Research on water level monitoring based on image processing. Semiconductor Optoelectronics, 2019, 40(3): 390-394+400. (in Chinese)
[6]  BAI, G. G., HOU, J. M., ZHANG, Y. W., et al. An intelligent water level monitoring method based on SSD algorithm. Measurement, 2021, 185: 110047.
https://doi.org/10.1016/j.measurement.2021.110047
[7]  JAFARI, N. H., LI, X., CHEN, Q., et al. Real-time water level monitoring using live cameras and computer vision techniques. Computers & Geosciences, 2020, 147(5): 104642.
https://doi.org/10.1016/j.cageo.2020.104642
[8]  CHEN, L. C., ZHU, Y., PAPANDREOU, G., et al. Encoder-Decoder with atrous separable convolution for Semantic image segmentation. In Ferrari, V., et al. (Eds.), Computer Vision—ECCV 2018. Berlin: Springer, 2018: 833-851.
https://doi.org/10.1007/978-3-030-01234-2_49
[9]  王文冠, 沈建冰, 贾云得. 视觉注意力检测综述[J]. 软件学报, 2019, 30(2): 416-439. WANG Wenguan, SHEN Jianbing and JIA Yunde. Review of visual attention detection. Journal of Software, 2019, 30(2): 416-439. (in Chinese)
[10]  WOO, S., PARK, J., LEE, J. Y., et al. CBAM: Convolutional block attention module. In Ferrari, V., et al. (Eds.), Computer Vision—ECCV 2018. Berlin: Springer, 2018: 3-19.
https://doi.org/10.1007/978-3-030-01234-2_1
[11]  KRA?HENBU?HL, P., KOLTUN, V. Efficient inference in fully connected CRFs with gaussian edge potentials. Advances in Neural Information Processing Systems, 2011, 24: 109-117.
[12]  甘亦炘. 基于条件随机场的端对端图像语义分割算法研究[D]: [硕士学位论文]. 西安: 西安电子科技大学, 2019. GAN Yixin. Research on the end-to-end semantic image segmentation algorithm based on the conditional random field model. Master’s Thesis, Xi’an: Xidian University, 2019. (in Chinese)
[13]  LIANG, Y., JAFARI, N., LUO, X., et al. WaterNet: An adaptive matching pipeline for segmenting water with volatile appearance. Computational Visual Media, 2020, 6(1): 65-78.
https://doi.org/10.1007/s41095-020-0156-x
[14]  CHENG, Y., JIANG, M., ZHU, J., et al. Are we ready for unmanned surface vehicles in inland waterways? The USVInlandMultisensor dataset and benchmark. IEEE Robotics and Automation Letters, 2021, 6(2): 3964-3970.
https://doi.org/10.1109/LRA.2021.3067271
[15]  BADRINARAYANAN, V., KENDALL, A. and CIPOLLA, R. SegNet: A deep convolutional encoder-decoder architecture for Image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
https://doi.org/10.1109/TPAMI.2016.2644615
[16]  RONNEBERGER, O., FISCHER, P. and BROX, T. U-Net: Convolutional networks for biomedical image segmentation. In Navab, N., et al. (Eds.), Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015. Berlin: Springer, 2015: 234-241.
https://doi.org/10.1007/978-3-319-24574-4_28
[17]  LONG, J., SHELHAMER, E. and DARRELL, T. Fully convolutional networks for semantic segmentation. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Manhattan: The Institute of Electrical and Electronics Engineers, 2015: 3431-3440.
https://doi.org/10.1109/CVPR.2015.7298965
[18]  水利部长江水利委员会水文局. GB/T 50138-2010. 水位观测标准[S]. 北京: 中国计划出版社, 2010. Bureau of Hydrology of Changjiang Water Resources Commission of the Ministry of Water Resources. GB/T 50138-2010. Standard for stage observation. Beijing: China Planning Press, 2010. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133