|
Material Sciences 2022
光学透明吸波材料的研究进展及未来发展方向
|
Abstract:
在有透光率要求场合的应用背景下,光学窗口部位是电磁防护的薄弱部位,该部位不仅要具有较高的透光特性,而且需要具有雷达波吸收功能,但是由于光学透明吸波材料受限,多年来,采用反射性结构电磁防护透明材料实现电磁波损耗吸收。随着新材料新技术的发展,吸收型电磁防护透明材料步入舞台,加快了电磁防护透光材料在透明吸波技术领域的应用。本文针对吸收型电磁防护透明材料发展历程,从多层渐变介质吸收、谐振吸收、损耗吸收、复合吸收等角度进行分析,并提出了光学透明吸波材料的未来发展方向。
The optical window area is the weak part of the electro-magnetic shielding in the condition of light transmittance requirement, the area should not only has high transmission characteristics, but also need to have the function of radar wave absorbing, but due to the limited optical transparent absorbing materials, over the years, electromagnetic wave loss absorption is realized by adopting reflective structure electromagnetic protection trans-parent material. With the development of new materials and technologies, due to the extensive re-search of absorbing transparent materials for electromagnetic protection, the electromagnetic pro-tective transparent material in the field of transparent wave-absorbing technology has also been accelerated. In this paper, the development of absorbing transparent materials for electromagnetic protection is analyzed from the perspectives of multilayer gradient medium absorption, resonant absorption, loss absorption and composite absorption, and the future development direction of op-tical transparent absorbing materials is proposed.
[1] | 杨盟, 刁训刚, 孙裔, 等. 氧化铟锡(ITO)薄膜的透明吸波特性研究[J]. 功能材料与器件学报, 2006, 12(5): 465-468. |
[2] | 李世涛, 乔学亮, 陈建国, 等. 透明导电薄膜(TCF)的吸波机理及应用研究[J]. 金属热处理, 2006, 31(7): 6-12. |
[3] | Kurihara, H., Hirai, Y., Takizawa, K., et al. (2005) An Improvement of Communication Environment for ETC System by Using Transparent EM Wave Absorber. IEICE Transactions on Electronics, 88, 2350-2357.
https://doi.org/10.1093/ietele/e88-c.12.2350 |
[4] | Okano, Y., Ogino, S. and Ishikawa, K. (2015) Development of Optically Transparent Ultrathin Microwave Absorber for Suppression of Misidentification Possibility of UHF‐RFID System. Electronics and Communications in Japan, 98, 36-46. https://doi.org/10.1002/ecj.11620 |
[5] | Takizawa, K. and Hashimoto, O. (1999) Transparent Wave Absorber Using Resistive Thin Film at V-Band Frequency. IEEE Transac-tions on Microwave Theory and Techniques, 47, 1137-1141. https://doi.org/10.1109/22.775450 |
[6] | Emerson, W.H. (1973) Electromagnetic Wave Absorbers and Anechoic Chambers through the Years. IEEE Transactions on An-tennas and Propagation, 21, 484-490. https://doi.org/10.1109/TAP.1973.1140517 |
[7] | Knott, E.F., Schaeffer, J.F. and Tuly, M.T. (1985) Radar Cross Section, Its Prediction, Measurement and Reduction. Artech House, Lon-don. |
[8] | Fante, R.L. and McCormack, M.T. (1988) Reflection Properties of the Salisbury Screen. IEEE Transactions on Antennas and Propagation, 36, 1443-1454. https://doi.org/10.1109/8.8632 |
[9] | du Toit, L.J. (1994) The Design of Jaumann Absorbers. IEEE Antennas and Propagation Magazine, 36, 17-25.
https://doi.org/10.1109/74.370526 |
[10] | Knott, E.F. and Lunden, C.D. (1995) The Two Sheet Capacitive Jaumann Absorber. IEEE Transactions on Antennas and Propagation, 43, 1339-1343. https://doi.org/10.1109/8.475112 |
[11] | 邢丽英, 刘俊能. 电阻渐变型结构吸波材料的研究与发展[J]. 航空材料学报, 2000, 20(3): 187-191. |
[12] | 李世涛, 乔学亮, 陈建国. 透明导电薄膜的研究现状及应用[J]. 激光与光电子学进展, 2003, 40(7) : 53-59. |
[13] | Kim, S.-S., Yoon, Y.-C. and Kim, K.-H. (2003) Electromagnetic Wave Absorbing Properties of High-Permittivity Ferroelectrics Coated with ITO Thin Films of 377 Ω. Journal of Electroceramics, 10, 95-101.
https://doi.org/10.1023/A:1025691621778 |
[14] | 李世涛, 乔学亮, 陈建国. 卫星多功能激光防护膜层的研究[J]. 激光杂志, 2005, 36(4): 9-10. |
[15] | Du Toit, L.J. (1994) The Design of Jauman Absorbers. IEEE Antennas and Propa-gation Magazine, 36, 17-25.
https://doi.org/10.1109/74.370526 |
[16] | Takizawa, K., Hashimoto, O. and Abe, T. (1998) Transparent Wave Ab-sorber Using Resistive Film. Electronics Letters, 34, 347-349. https://doi.org/10.1049/el:19980348 |
[17] | Yi, D., Wei, X.-C., Lin, S.-S., et al. (2015) Transparent Microwave Absorber Based on Single Layer Graphene Film. IEEE Proceedings of the 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, 6-9 December 2015, 1-3.
https://doi.org/10.1109/APMC.2015.7413318 |
[18] | Haruta, M., Wada, K. and Hashimoto, O. (2000) Wideband Wave Absorber at X Frequency Band Using Transparent Resistive Film. Microwave and Optical Technology Letters, 24, 223-226.
https://doi.org/10.1002/(SICI)1098-2760(20000220)24:4<223::AID-MOP4>3.0.CO;2-T |
[19] | Soh, T., Kondo, A., Toyota, M. and Hashimoto, O. (2003) A Basic Study of Millimeter-Wave Absorber for Two Frequency Bands Using Transparent Resistive Films. IEEE International Symposium on Electromagnetic Compatibility, Vol. 1, 149-154. |
[20] | Takizawa, K. and Hashimoto, O. (1999) Transparent Wave Absorber Using Resistive Thin Film V-Band Frequency. IEEE Transactions on Microwave Theory and Techniques, 47, 1137-1141. https://doi.org/10.1109/22.775450 |
[21] | Hashimoto, O., Abe, T., Satake, R., Kaneko, M. and Hashimoto, Y. (1995) Design and Manufacturing of Resistive-Sheet Type Wave Absorber at 60 GHz Frequency Band. The IEICE Transac-tions on Communications, E78-B, 246-252. |
[22] | Takizawa, K., Hashimoto, O. and Abe, T. (1998) Transparent Wave Absorber Using Resistive Film. Electronics Letters, 34, 347-349. https://doi.org/10.1049/el:19980348 |
[23] | Landy, N.I., Sajuyigbe, S., Mock, J.J., et al. (2008) Perfect Metamaterial Absorber. Physical Review Letters, 100, Article ID: 207402. https://doi.org/10.1103/PhysRevLett.100.207402 |
[24] | 李小秋, 冯晓国, 高劲松. 光学透明频率选择表面的研究[J]. 物理学报, 2008, 57(5): 3193-3197. |
[25] | D’Amore, M., De Santis, V. and Feliziani, M. (2012) Equiva-lent Circuit Modeling of Frequency-Selective Surfaces Based on Nanostructured Transparent Thin Films. IEEE Transac-tions on Magnetics, 12, 703-706.
https://doi.org/10.1109/TMAG.2011.2171922 |
[26] | Okano, Y. and Ogins, S. (2012) Development of Optically Transparent Ultrathin Microwave Absorber for Ultrahigh-Frequency RF Identification System. IEEE Transactions on Microwave Theory and Techniques, 60, 2456-2464.
https://doi.org/10.1109/TMTT.2012.2202680 |
[27] | Jang, T., Youn, H., Shin, Y.J., et al. (2014) Transparent and Flexible Polarization-Independent Microwave Broadband Absorber. ACS Photonics, 1, 279-284. https://doi.org/10.1021/ph400172u |
[28] | Hong, I.P. (2015) Transparent Electromagnetic Absorber for Stable Angle of Incidence. Microwave and Optical Technology Letters, 57, 2023-2025. https://doi.org/10.1002/mop.29249 |
[29] | Hu, D.W., Cao, J., Li, W., et al. (2017) Optically Transparent Broadband Microwave Absorption Metamaterial by Standing-Up Closed-Ring Resonators. Advanced Optical Materials, 5, Article ID: 1700109.
https://doi.org/10.1002/adom.201700109 |
[30] | 徐翠莲, 孟跃宇, 王甲富, 闫明宝, 王雯洁, 蒋进明, 屈绍波. 光学透明红外与雷达兼容隐身复合超表面[J]. 光子学报, 2021, 50(4): 0416001. |
[31] | 周必成, 王东红, 贾巍, 赵亚娟, 李宝毅. 光学透明和双波段吸波超材料的设计与性能[J]. 微波学报, 2016, 32(3): 46-50. |
[32] | Shen, Y., Zhang, J.Q., Pang, Y.Q., et al. (2018) Transparent Broadband Metamaterial Absorber Enhanced by Water-Substrate Incorpora-tion. Optics Express, 26, 15665-15674. https://doi.org/10.1364/OE.26.015665 |
[33] | Harsh, S., Gaganpreet, S., Saptarshi, G., et al. (2019) An Optically Transparent Broadband Microwave Absorber Using Interdigital Capacitance. IEEE Antennas & Wireless Propagation Letters, 18, 113-117.
https://doi.org/10.1109/LAWP.2018.2882584 |
[34] | Harsh, S., Saptarshi, G., Gaganpreet, S., et al. (2017) Trans-parent Broadband Metamaterial Absorber Based on Resistive Films. Journal of Applied Physics, 122, Article ID: 105105. https://doi.org/10.1063/1.5001511 |
[35] | Zhang, C. and Cheng, Q. (2017) Opticalliy Transparent Metamaterial for Broadband Millimeter Wave Absorption. 2017 10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), Liverpool, 11-13 September 2017, 1-4. https://doi.org/10.1109/UCMMT.2017.8068475 |
[36] | Zhang, C., Cheng, Q., Yang, J., et al. (2017) Broadband Metamaterial for Optical Transparency and Microwave Absorption. Applied Physics Letters, 110, Article ID: 143511. https://doi.org/10.1063/1.4979543 |
[37] | Wu, B., Tuncer, H.M., Naeem, M., et al. (2014) Experimental Demonstra-tion of a Transparent Grapheme Millimetre Wave Absorber with 28% Fractional Bandwidth at 140 GHz. Scientific Re-ports, 4, Article No. 4130.
https://doi.org/10.1038/srep04130 |
[38] | Grande, M., Bianco, G., Vincenti, M., et al. (2016) Optically Transparent Microwave Screens Based on Engineered Graphene Layers. Optics Express, 24, 22788-22795. https://doi.org/10.1364/OE.24.022788 |
[39] | Glaser, H.J. (2000) Large Aera Glass Coating. Von Ardenne Anla-gentechnik GMBH, Dresden. |
[40] | Yi, D., Wei, X.C. and Xu, Y.L. (2017) Tunable Microwave Absorber Based on Pat-terned Graphene. IEEE Transactions on Microwave Theory and Techniques, 65, 2819-2826. https://doi.org/10.1109/TMTT.2017.2678501 |
[41] | 王越, 王丽, 董连和, 等. 基于石墨烯电光特性的多功能超材料吸波体设计[J]. 中国科学: 物理学力学天文学, 2018, 48(4): 047001. |
[42] | 邹楠, 易韵, 薛淑云, 李黄炎, 吴文. 一种液控可调透明吸波结构[J]. 微波学报, 2021, 37(5): 73-86. |
[43] | 吴杨慧, 王俊杰, 赖森锋, 朱晓波, 顾文华. 用于航空电磁防护和智能隐身的光学透明柔性宽带吸波器的试验研究[J]. 航空科学技术, 2019, 30(5): 70-74. |