Cloning and Characterization of Eukaryotic Translation Initiation Factor 4E (eIF4E) Gene Family in Ipomoea batatas L. (Lam) for Understanding Hexaploid Sweetpotato-Virus Interactions
Characterization
of genes related to sweetpotato viral
disease resistance is critical for understanding plant-pathogen interactions,
especially with feathery mottle virus infection. For example, genes encoding
eukaryotic translation initiation factor (eIF)4E,
its isoforms, eIF(iso)4E,
and the cap-binding protein (CBP) in plants, have been implicated in
viral infections aside from their importance in protein synthesis. Full-length
cDNA encoding these putative eIF targets from susceptible/resistant and unknown
hexaploid sweetpotato (Ipomoea batatas L. Lam) were amplified based on
primers designed from the diploid wild-type relative Ipomoea trifida consensus sequences, and designated IbeIF4E, IbeIF(iso)4E and IbCBP.
Comparative analyses following direct-sequencing of PCR-amplified cDNAs versus
the cloned cDNA sequences identified multiple homeoalleles: one to four IbeIF4E, two to three IbeIF(iso)4E, and two IbCBP within all cultivars tested. Open reading frames were in the length of 696 bp IbeIF4E, 606 bp IbeIF(iso)4E,
and 675 bp IbCBP. The encoded single polypeptide lengths were 232, 202,
and 225 amino acids for IbeIF4E, IbeIF(iso)4E, and IbCBP,
with a calculated protein molecular mass of 26 kDa, 22.8 kDa, and 25.8 kDa,
while their theoretical isoelectric points were 5.1, 5.57, and 6.6,
respectively. Although the homeoalleles had similar sequence lengths, single
nucleotide polymorphisms and multi-allelic variations were detected within the
coding sequences. The multi-sequence alignment performed revealed a 66.9% - 96.7%
sequence similarity between the predicted amino acid sequences obtained from
the homeoalleles and closely related species. Furthermore, phylogenetic
analysis revealed ancestral relationships between the eIF4E homeoalleles and
other species. The outcome herein on the eIF4E superfamily and its correlation
in sequence variations suggest opportunities to decipher the role of eIF4E in
hexaploid sweetpotato feathery mottle virus infection.
References
[1]
Gao, M., Soriano, S.F., Cao, Q., Yang, X. and Lu, G. (2020) Hexaploid Sweetpotato (Ipomoea batatas (L.) Lam.) May Not Be a True type to Either Auto- or Allopolyploid. PLOS ONE, 15, e0229624.
https://doi.org/10.1371/journal.pone.0229624
[2]
Shahbandeh, M. (2022, April 4) Sweet Potato: Worldwide Market Value Forecast 2020-2025. Statista.
https://www.statista.com/statistics/1100004/global-sweet-potato-market-size/
[3]
USDA-National Agricultural Statistics Service (2021) Vegetables 2020 Summary.
https://usda.library.cornell.edu/concern/publications/02870v86p?locale=en
[4]
Loebenstein, G. and Katis, N.I. (2015) Advances in Virus Research: Control of Plant Viral Diseases Vegetatively Propagated Crops. Advances in Virus Research, 91, 33-45. https://www.sciencedirect.com/science/article/abs/pii/S0065352714000062
https://doi.org/10.1016/bs.aivir.2014.10.005
[5]
Mwanga, R.O.M., Kriegner, A., Cervantes-Flores, J.C., Zhang, D.P., Moyer, J.W. and Yencho, G.C. (2002) Resistance to Sweetpotato Chlorotic Stunt Virus and Sweetpotato Feathery Mottle Virus Is Mediated by Two Separate Recessive Genes in Sweetpotato. Journal of the American Society for Horticultural Science, 127, 798-806. https://doi.org/10.21273/JASHS.127.5.798
[6]
Njeru, R.W., Mburu, M.W.K., Cheramgoi, E., Gibson, R.W., Kiburi, Z.M., Obudho, E. and Yobera, D. (2004) Studies on the Physiological Effects of Viruses on Sweetpotato Yield in Kenya. Annals Applied Biology, 145, 71-76.
https://doi.org/10.1111/j.1744-7348.2004.tb00360.x
[7]
Clark, C.A. and Hoy, M.W. (2006) Effects of Common Viruses on Yield and Quality of Beauregard Sweetpotato in Louisiana. Plant Disease, 90, 83-88.
https://doi.org/10.1094/PD-90-0083
[8]
Bednarek, R., David, M., Fuentes, S., Kreuze, J. and Fei, Z. (2021) Transcriptome Analysis Provides Insights into the Responses of Sweetpotato to Sweetpotato Virus Disease (SPVD). Virus Research, 295, Article ID: 198293.
https://doi.org/10.1016/j.virusres.2020.198293
[9]
Kokkinos, C.D. and Clark, C.A. (2006) Interactionsamong Sweetpotato chlorotic Stunt Virus and Different Potyviruses and Potyvirus Strains Infecting Sweetpotato in the United States. Plant Disease, 90, 1347-1352.
https://doi.org/10.1094/PD-90-1347
[10]
Karyeija, R.F., Kreuze, J.F., Gibson, R.W. and Valkonen, J.P.T. (2000) Synergistic Interactions of a Potyvirus and a Phloem-Limited Crinivirus in Sweetpotato Plants. Virology, 269, 26-36. https://doi.org/10.1006/viro.1999.0169
[11]
Kwak, H.-R., Kim, J., Kim, M.-K., Seo, J.-K., Jung, M.-N., Kim, J.-S., Lee, S., et al. (2015) Molecular Characterization of Five Potyviruses Infecting Korean Sweet Potatoes Based on Analyses of Complete Genome Sequences. The Plant Pathology Journal, 31, 388-401. https://doi.org/10.5423/PPJ.OA.04.2015.0072
[12]
Wang, H., Wu, Y., Zhang, Y., Yang, J., Fan, W., Zhang, H., Zhao, S., et al. (2019) CRISPR/Cas9-Based Mutagenesis of Starch Biosynthetic Genes in Sweet Potato (Ipomoea batatas) for the Improvement of Starch Quality. International Journal of Molecular Sciences, 20, Article No. 4702. https://doi.org/10.3390/ijms20194702
[13]
Miano, D.W., LaBonte, D.R. and Clark, C.A. (2008) Identification of Molecular Markers Associated with Sweetpotato Resistance to Sweetpotato Virus Disease in Kenya. Euphytica, 160, 15-24. https://doi.org/10.1007/s10681-007-9495-2
[14]
Wang, A. and Krishnaswamy, S. (2012) Eukaryotic Translation Initiation Factor 4E-Mediated Recessive Resistance to Plant Viruses and its Utility in Crop Improvement. Molecular Plant Pathology, 13, 795-803.
https://doi.org/10.1111/j.1364-3703.2012.00791.x
[15]
Maule, A.J., Caranta, C. and Boulton, M.I. (2007) Sources of Natural Resistance to Plant Viruses: Status and Prospects. Molecular Plant Pathology, 8, 223-231.
https://doi.org/10.1111/j.1364-3703.2007.00386.x
[16]
Studer, S.M. and Joseph, S. (2007) Binding of mRNA to the Bacterial Translation Initiation Complex. Methods of Enzymology, 430, 31-44.
https://doi.org/10.1016/S0076-6879(07)30002-5
[17]
Prévot, D., Darlix, J.-L. and Ohlmann, T. (2003) Conducting the Initiation of Protein Synthesis: The Role of eIF4G. Biology of the Cell, 95, 141-156.
https://doi.org/10.1016/S0248-4900(03)00031-5
[18]
Combe, J.P., Petracek, M.E., van Eldik, G., Meulewaeter, F. and Twell, D. (2005) Translation Initiation Factors eIF4E and eIFiso4E are Required for Polysome Formation and Regulate Plant Growth in Tobacco. Plant Molecular Biology, 57, 749-760. https://doi.org/10.1007/s11103-005-3098-x
Browning, K.S. (2004) Plant Translation Initiation Factors: It Is Not Easy to Be Green. Biochemical Society Transactions, 32, 589-591.
https://doi.org/10.1042/BST0320589
[21]
Coutinho de Oliveira, L., Volpon, L., Rahardjo, A.K., Osborne, M.J., Culjkovic-Kraljacic, B., Trahan, C., Oeffinger, M., Kwok H.B. and Borden L.B.K. (2019) Structural Studies of the eIF4E-VPg Complex Reveal a Direct Competition for Capped RNA: Implications for Translation. Proceedings of the National Academy of Sciences of the United States of America, 116, 24056-24065.
https://doi.org/10.1073/pnas.1904752116
[22]
Charron, C., Nicolai, M., Gallois, J.-L., Robaglia, C., Moury, B., Palloix, A. and Caranta, C. (2008) Natural Variation and Functional Analyses Provide Evidence for Co-Evolution between Plant eIF4E and Potyviral VPg. The Plant Journal, 54, 56-68.
https://doi.org/10.1111/j.1365-313X.2008.03407.x
[23]
Rhoads, R.E. (2009) eIF4E: New Family Members, New Binding Partners, New Roles. Journal of Biological Chemistry, 284, 16711-16715.
https://doi.org/10.1074/jbc.R900002200
[24]
Dutt, S., Parkash, J., Mehra, R., Sharma, N., Singh, B., Raigond, P., Joshi, A., Chopra S. and Singh P.B. (2015) Translation Initiation in Plants: Roles and Implications beyond Protein Synthesis. Biologia Plantarum Plant, 59, 401-412.
https://doi.org/10.1007/s10535-015-0517-y
[25]
Jackson, R.J., Hellen, C.U.T. and Pestova, T.V. (2010) The Mechanism of Eukaryotic Translation Initiation and Principles of Its Regulation. Nature Reviews Molecular Cell Biology, 11, 113-127. https://doi.org/10.1038/nrm2838
[26]
Shi, S., Zhang, X., Mandel, M.A., Zhang, P., Zhang, Y., Ferguson, M., Amuge, T., Rounsley S., Liu Z. and Xiong, Z. (2017) Variations of Five eIF4E Genes across Cassava Accessions Exhibiting Tolerant and Susceptible Responses to Cassava Brown Streak Disease. PLOS ONE, 12, e0181998.
https://doi.org/10.1371/journal.pone.0181998
[27]
Yang, Z., Dong, M., Cheng, G., Liu, S., Zhang, H., Shang, H., Zhou, Y., Huang, G., Zhang, M., Wang, F. and Xu, J. (2021) Selective Interaction of Sugarcane eIF4E with VPgs from Sugarcane Mosaic Pathogens. Viruses, 13, Article No. 518.
https://doi.org/10.3390/v13030518
[28]
Jiang, J. and Laliberté, J.-F. (2011) The Genome-Linked Protein VPg of Plant Viruses-A Protein with many Partners. Current Opinion in Virology, 1, 347-354.
https://doi.org/10.1016/j.coviro.2011.09.010
[29]
Yadav, S. and Chhibbar, A. (2016) Plant-Virus Interactions Molecular Aspects of Plant-Pathogen Interaction. Springer, Cham.
https://doi.org/10.1007/978-3-319-25489-0
[30]
Bastet, A., Robaglia, C. and Gallois, J.-L. (2017) eIF4E Resistance: Natural Variation Should Guide Gene Editing. Trends in Plant Science, 22, 411-419.
https://doi.org/10.1016/j.tplants.2017.01.008
[31]
Khan, M.A. and Goss, D.J. (2019) Poly (A) Binding Protein Enhances the Binding Affinity of Potyvirus VPg to Eukaryotic Initiation Factor eIF4F and Activates In-Vitro Translation. International Journal of Biological Macromolecules, 121, 947-955. https://doi.org/10.1016/j.ijbiomac.2018.10.135
[32]
Truniger, V. and Aranda, M.A. (2009) Recessive Resistance to Plant Viruses. Advances in Virus Research, 75, 119-159+231.
https://doi.org/10.1016/S0065-3527(09)07504-6
[33]
Kanyuka, K., Druka, A., Caldwell, D.G., Tymon, A., Mccallum, N., Waugh, R. and Adams, M.J. (2005) Evidence that the Recessive Bymovirus Resistance Locus Rym4 in Barley Corresponds to the Eukaryotic Translation Initiation Factor 4E Gene. Molecular Plant Pathology, 6, 449-458.
https://doi.org/10.1111/j.1364-3703.2005.00294.x
[34]
Yoshii, M., Shimizu, T., Yamazaki, M., Higashi, T., Miyao, A., Hirochika, H. and Omura, T. (2009) Disruption of a Novel Gene for a NAC-Domain Protein Rice Confers Resistance to Rice Dwarf Virus. The Plant Journal, 57, 615-625.
https://doi.org/10.1111/j.1365-313X.2008.03712.x
[35]
Duprat, A., Caranta, C., Revers, F., Menand, B., Browning, K.S. and Robaglia, C. (2002) The Arabidopsis Eukaryotic Initiation Factor (iso)4E Is Dispensable for Plant Growth but Required for Susceptibility to Potyviruses. The Plant Journal, 32, 927-934.
https://doi.org/10.1046/j.1365-313X.2002.01481.x
[36]
Lellis, A.D., Kasschau, K.D., Whitham, S.A. and Carrington, J.C. (2002) Loss-of-Susceptibility Mutants of Arabidopsis Thaliana Reveal an Essential Role for eIF(iso)4E during Potyvirus Infection. Current Biology, 12, 1046-1051.
https://doi.org/10.1016/S0960-9822(02)00898-9
[37]
Nicaise, V., German-Retana, S., Sanjuán, R., Dubrana, M.-P., Mazier, M., Maisonneuve, B., Candresse, T., Caranta C. and LeGall O. (2003) The Eukaryotic Translation Initiation Factor 4E Controls Lettuce Susceptibility to the Potyvirus Lettuce mosaic virus. Plant Physiology, 132, 1272-1282.
https://doi.org/10.1104/pp.102.017855
[38]
Ruffel, Sandrine, Dussault, M.-H., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C. and Caranta, C. (2002) A Natural Recessive Resistance Gene against Potato Virus Y in Pepper Corresponds to the Eukaryotic Initiation Factor 4E. The Plant Journal, 4, 1067-1075. https://doi.org/10.1046/j.1365-313X.2002.01499.x
[39]
Sato, M., Nakahara, K., Yoshii, M., Ishikawa, M. and Uyeda, I. (2005) Selective Involvement of Members of the Eukaryotic Initiation Factor 4E Family in the Infection of Arabidopsis thaliana by Potyviruses. Federation of European Biochemical Societies (FEBS) Letters, 579, 1167-1171.
https://doi.org/10.1016/j.febslet.2004.12.086
[40]
Yoshii, M., Nishikiori, M., Tomita, K., Yoshioka, N., Kozuka, R., Naito, S. and Ishikawa, M. (2004) The Arabidopsis Cucumovirus Multiplication 1 and 2 Loci Encode Translation Initiation Factors 4E and 4G. Journal of Virology, 78, 6102-6111.
https://doi.org/10.1128/JVI.78.12.6102-6111.2004
[41]
Zaidi, S.S.-A., Mukhtar, M.S. and Mansoor, S. (2018) Genome Editing: Targeting Susceptibility Genes for Plant Disease Resistance. Trends in Biotechnology, 36, 898-906. https://doi.org/10.1016/j.tibtech.2018.04.005
[42]
Sadowy, E., Milner, M. and Haenni, A.-L. (2001) Proteins Attached to Viral Genomes Are Multifunctional. Advances in Virus Research, 57, 185-262.
https://doi.org/10.1016/S0065-3527(01)57004-9
[43]
Mazier, M., Flamain, F., Nicolai, M., Sarnette, V. and Caranta, C. (2011) Knock-Down of Both eIF4E1 and eIF4E2 Genes Confers Broad-Spectrum Resistance against Potyviruses in Tomato. PLOS ONE, 6, e29595.
https://doi.org/10.1371/journal.pone.0029595
[44]
Ruffel, S., Gallois, J.L., Lesage, M.L. and Caranta, C. (2005) The Recessive Potyvirus Resistance Gene Pot-1 Is the Tomato Orthologue of the Pepper pvr2-eIF4E Gene. Molecular Genetics and Genomics, 274, 346-353.
https://doi.org/10.1007/s00438-005-0003-x
[45]
Nieto, C., Morales, M., Orjeda, G., Clepet, C., Monfort, A., Sturbois, B., Puigdomènech, P., Pitrat, M., Caboche, M., Dogimont, C., Garcia-Mas, J., Aranda A.M. and Bendahmane A. (2006) An eIF4E Allele Confers Resistance to an Uncapped and Non-Polyadenylated RNA Virus in Melon. The Plant Journal, 48, 452-462.
https://doi.org/10.1111/j.1365-313X.2006.02885.x
[46]
Zhang, Y.-Y., Qi, M.-F., Sun, J., Zhang, X.-H., Shi, H.-L., Li, H.-X. and Ye, Z.-B. (2009) Molecular Cloning and Characterization of a Gene Encoding Eukaryotic Initiation Factor iso4E in Tomato (Solanum lycopersicum). Plant Molecular Biology Reporter, 27, 400-406. https://doi.org/10.1007/s11105-009-0090-7
[47]
Sanfacon, H. (2015) Plant Translation Factors and Virus Resistance. Viruses, 7, 3392-3419. https://doi.org/10.3390/v7072778
[48]
Poulicard, N., Pacios, L.F., Gallois, J.-L., Pinero, D. and García-Arenal, F. (2016) Human Management of a Wild Plant Modulates the Evolutionary Dynamics of a Gene Determining Recessive Resistance to Virus Infection. Public Library of Science Genetics, 12, Article ID: 1006214. https://doi.org/10.1371/journal.pgen.1006214
[49]
Shopan, J., Liu, C., Hu, Z., Zhang, M. and Yang, J. (2020) Identification of Eukaryotic Translation Initiation Factors and the Temperature-Dependent Nature of Turnip mosaic virus Epidemics in Allopolyploid Brassica juncea. 3 Biotech, 10, Article No. 75. https://doi.org/10.1007/s13205-020-2058-0
[50]
Tugume, A.K., Cuellar, W.J., Muskasa, S.B. and Valkonen, J.P.T. (2010) Molecular Genetic Analysis of Virus Isolates from Wild and Cultivated Plants Demonstrates that East Africa is a Hotspot for the Evolution and Diversification of Sweetpotato Feathery Mottle Virus. Molecular Ecology, 19, 3139-3156.
https://doi.org/10.1111/j.1365-294X.2010.04682.x
[51]
Okada, Y., Kobayashi, A., Tabuchi, H. and Kuranouchi, T. (2017) Review of Major Sweetpotato Pests in Japan, with Information on Resistance Breeding Programs. Breeding Science, 67, 73-82. https://doi.org/10.1270/jsbbs.16145
[52]
Adikini, S., Mukasa, S.B., Mwanga, R.O.M. and Gibson, R.W. (2016) Effects of Sweetpotato Feathery Mottle Virus and Sweetpotato Chlorotic Stunt Virus on the Yield of Sweet Potato in Uganda. Journal of Phytopathology, 164, 242-254.
https://doi.org/10.1111/jph.12451
[53]
Karyeija, R.F., Gibson, R.W. and Valkonen, J.P.T. (1998) The Significance of Sweetpotato Feathery Mottle Virus in Subsistence Sweetpotato Production in Africa. Plant Disease, 82, 4-15. https://doi.org/10.1094/PDIS.1998.82.1.4
[54]
Gutie’rrez, D.L., Fuentes, S. and Salazar, L.F. (2003) Sweetpotato Virus Disease (SPVD): Distribution, Incidence, and Effect on Sweetpotato Yield in Peru. Plant Disease, 87, 297-302. https://doi.org/10.1094/PDIS.2003.87.3.297
[55]
Léonard, S., Plante, D., Wittmann, S., Daigneault, N., Fortin, M.G. and Laliberté, J.-F. (2000) Complex Formation between Potyvirus VPg and Translation Eukaryotic Initiation Factor 4E Correlates with Virus Infectivity. Journal of Virology, 74, 7730-7737. https://doi.org/10.1128/JVI.74.17.7730-7737.2000
[56]
McGregor, C.E., Miano, D.W., LaBonte, D.R., Hoy, M., Clark, C.A. and Rosa, G.J.M. (2009) Differential Gene Expression of Resistant and Susceptible Sweetpotato Plants after Infection with the Causal Agents of Sweetpotato Virus Disease. Journal of American Society for Horticulture Science, 134, 658-666.
https://doi.org/10.21273/JASHS.134.6.658
[57]
Roullier, C., Duputié, A., Wennekes, P., Benoit, L., Fernández Bringas, V.M., Rossel, G., Tay, D., McKey, D. and Lebot, V. (2013) Disentangling the Origins of Cultivated Sweetpotato (Ipomoea batatas (L.) Lam.). PLOS ONE, 8, e62707.
https://doi.org/10.1371/journal.pone.0062707
[58]
Kyndta, T., Quispe, D., Zhai, H., Jarret, R., Ghislain, M., Liu, Q., Gheysen, G., Kreuze F.J. (2015) The Genome of Cultivated Sweetpotato Contains Agrobacterium T-DNAs with Expressed Genes: An Example of a Naturally Transgenic Food Crop. Proceedings of the National Academy of Sciences of the United States of America, 112, 5844-5849. https://doi.org/10.1073/pnas.1419685112
[59]
Wu, S., Lau, K.H., Cao, Q., Hamilton, J.P., Sun, H., Zhou, C., Eserman, L., Gemenet, C.D., Olukolu, A.B., Wang, H., Crisovan, E., Godden, T.G., Jiao, C., Wang, X., Kitavi, M., Manrique-Carpintero, N., Vaillancourt, B., Wiegert-Rininger, K., Yang, X., Bao K., Schaff, J., Kreuze J., Gruneberg, W., Khan, A., Ghislain, M., Ma, D., Jiang.J., Mwanga M.O.R., Leebens-Mack, J., Coin, M.J.L., Yencho G.C., Buell C.R. and Zhangun, F. (2018) Genome Sequences of Two Diploid Wild Relatives of Cultivated Sweetpotato Reveal Targets for Genetic Improvement. Nature Communications, 9, Article No. 4580. https://doi.org/10.1038/s41467-018-06983-8
[60]
Comai, L. (2005) The Advantages and Disadvantages of Being Polyploid. Nature Reviews Genetics, 6, 836-846. https://doi.org/10.1038/nrg1711
[61]
Kyriakidou, M., Tai, H.H., Anglin, N.L., Ellis, D. and Stromvik, M.V. (2018) Current Strategies of Polyploid Plant Genome Sequence Assembly. Frontiers in Plant Science, 9, Article No. 1660. https://doi.org/10.3389/fpls.2018.01660
[62]
Clevenger, J., Chavarro, C., Pearl, S.A., Ozias-Akins, P. and Jackson, S.A. (2015) Single Nucleotide Polymorphism Identification in Polyploids: A Review, Example, and Recommendations. Molecular Plant, 8, 831-846.
https://doi.org/10.1016/j.molp.2015.02.002
[63]
Egnin, Marceline, Mora, A. and Prakash, C.S. (1998) Factors Enhancing Agrobacterium tumefaciens-Mediated Gene Transfer in Peanut (Arachis hypogaea L.). In Vitro Cellular & Developmental Biology-Plant, 34, 310-318.
https://doi.org/10.1007/BF02822740
[64]
Egnin, M., Walker, M., Prakash C.S. and Jaynes J. (2002) Transgenic 'High Protein' Sweetpotatoes (Ipomoea batatas L., PI-318846-3) Engineered with an Artificial Storage Protein Gene (asp-1) Alter the Temporal Distribution/ Accumulation of Sporamin and B-amylase. In Vitro Cellular and Developmental Biology-Plant, 38, 56A.
[65]
Chang, C.-T., Tsai, C.-N., Tang, C.Y., Chen, C.-H., Lian, J.-H., Hu, C.-Y., Tsai, C.-L., Chao, A., Lai C-H., Wang, T-H. and Lee, Y-S. (2012) Mixed Sequence Reader: A Program for Analyzing DNA Sequences with Heterozygous Base Calling. The Scientific World Journal, 2012, 1-10. https://doi.org/10.1100/2012/365104
[66]
Kumar, S., Stecher, G. and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874. https://doi.org/10.1093/molbev/msw054
[67]
Corpet, F. (1988) Multiple Sequence Alignment with Hierarchical Clustering. Nucleic Acids Research, 16, 10881-10890. https://doi.org/10.1093/nar/16.22.10881
[68]
Gouet, P., Courcelle, E., Stuart, D. and Metoz, F. (1999) ESPript: Analysis of Multiple Sequence Alignments in PostScript. Bioinformatics, 15, 305-308.
https://doi.org/10.1093/bioinformatics/15.4.305
[69]
Prochnik, S., Marri, P.R., Desany, B., Rabinowicz, P.D., Kodira, C., Mohiuddin, M., Rodriguez, F., Fauquet, C., Tohme, J., Harkins, T., Rokhsar, S.D. and Rounsley, S. (2012) The Cassava Genome: Current Progress, Future Directions. Tropical Plant Biology, 5, 88-94. https://doi.org/10.1007/s12042-011-9088-z
[70]
Bredeson, J.V., Lyons, J.B., Prochnik, S.E., Wu, G.A., Ha, C.M., Edsinger-Gonzales, E., Grimwood, J., Schmutz, J., Rabbi, Y.I., Egesi, C., Nauluvula, P., Lebot, V., Ndunguru, J., Makamilo, G., Bart, S.R., Setter, L.T., Gleadow, M.R., Kulakow, P., Ferguson, E.M., Rounsley, S. and Rokhsar, S.D. (2016) Sequencing Wild and Cultivated Cassava and Related Species Reveals Extensive Interspecific Hybridization and Genetic Diversity. Nature Biotechnology, 34, 562-570.
https://doi.org/10.1038/nbt.3535
[71]
Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C.J., Lu, S., Chitsaz, F., Derbyshire K.M., Geer C.R., Gonzales, R.N., Gwadz, M., Hurwitz, I.D., Lu, F., Marchler, H.G., Song, S.J., Thanki, N., Wang, Z., Yamashita, A.R., Zhang, D., Zheng, C., Geer, Y L. and Bryant H.S. (2017) CDD/SPARCLE: Functional Classification of Proteins via Subfamily Domain Architectures. Nucleic Acids Res, 45, 200-203.
https://doi.org/10.1093/nar/gkw1129
[72]
Kommedal, O., Karlsen, B. and Saebo, O. (2008) Analysis of Mixed Sequencing Chromatograms and It’s Application in Direct 16S rRNA Gene Sequencing of Polymicrobial Samples. Journal of Clinical Microbiology, 46, 3766-3771.
https://doi.org/10.1128/JCM.00213-08
[73]
Austin, D.F. (1988) The Taxonomy, Evolution and Genetic Diversity of Sweetpotato and Related Wild Species. In: Gregory, P., Ed., Exploration, Maintenance and Utilization of Sweetpotato Genetic Resources, International Potato Center, Lima, 27-60.
[74]
Altmann, M., Edery, I., Trachsel, H. and Sonenberg, N. (1988) Site-Directed Mutagenesis of the Tryptophan Residues in Yeast Eukaryotic Initiation Factor 4E Effects on Cap Binding Activity. Journal of Biological Chemistry, 263, 17229-17232.
https://doi.org/10.1016/S0021-9258(19)77821-1
[75]
Morino, S., Hazama, H., Ozaki, M., Teraoka, Y., Shibata, S., Doi, M., Ueda, H., Ishida T. and Uesugi S. (1996) Analysis of the mRNA Cap-Binding Ability of Human Eukaryotic Initiation Factor-4E by Use of Recombinant Wild-Type and Mutant Forms. European Journal of Biochemistry, 239, 597-601.
https://doi.org/10.1111/j.1432-1033.1996.0597u.x
[76]
Monzingo, A.F., Dhaliwal, S., Dutt-Chaudhuri, A., Lyon, A., Sadow, J.H., Hoffman, D.W., Robertus, J.D., et al. (2007) The Structure of Eukaryotic Translation Initiation Factor-4E from Wheat Reveals a Novel Disulfide Bond. Plant Physiology, 143, 1504-1518. https://doi.org/10.1104/pp.106.093146
[77]
German-Retana, S., Walter, J., Doublet, B., Roudet-Tavert, G., Nicaise, V., Lecampion, C., Houvenaghel, M.-C., et al. (2008) Mutational Analysis of Plant Cap-Binding Protein eIF4E Reveals Key Amino Acids Involved in Biochemical Functions and Potyvirus Infection. Journal of Virology, 82, 7601-7612.
https://doi.org/10.1128/JVI.00209-08
[78]
Joshi, B., Lee, K., Maeder, D.L. and Jagus, R. (2005) Phylogenetic Analysis of eIF4E-Family Members. BioMed Central (BMC) Ecology and Evolution, 5, 1-20.
https://doi.org/10.1186/1471-2148-5-48
[79]
Mayberry, Laura K., Allen, M.L., Nitka, K.R., Campbell, L., Murphy, P.A. and Browning, K.S. (2011) Plant Cap-Binding Complexes Eukaryotic Initiation Factors eIF4F and eIFISO4F. Journal of Biological Chemistry, 286, 42566-42574.
https://doi.org/10.1074/jbc.M111.280099
[80]
Hjulsager, C.K., Olsen, B.S., Jensen, D.M.K., Cordea, M.I., Krath, B.N., Johansen, I.E. and Lund, O.S. (2006) Multiple Determinants in the Coding Region of Pea Seed-Borne Mosaic Virus P3 Are Involved in Virulence against sbm-2 Resistance. Virology, 355, 52-61. https://doi.org/10.1016/j.virol.2006.07.016
[81]
Ruud, K.A., Kuhlow, C., Goss, D.J. and Browning, K.S. (1998) Identification and Characterization of a Novel Cap-Binding Protein from Arabidopsis Thaliana. Journal of Biological Chemistry, 273, 10325-10330.
https://doi.org/10.1074/jbc.273.17.10325
[82]
Jones, D.T., Taylor, W.R. and Thornton, J.M. (1992) The Rapid Generation of Mutation Data Matrices from Protein Sequences. Bioinformatics, 8, 275-282.
https://doi.org/10.1093/bioinformatics/8.3.275
[83]
Shen, L.X., Basilion, J.P. and Stanton, V.P. (1999) Single-Nucleotide Polymorphisms can Cause Different Structural Folds of mRNA. Proceedings of the National Academy of Science of the United States of America, 96, 7871-7876.
https://doi.org/10.1073/pnas.96.14.7871
[84]
Galloway, A. and Cowling, V.H. (2019) mRNA Cap Regulation in Mammalian Cell Function and Fate. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms, 1862, 270-279. https://doi.org/10.1016/j.bbagrm.2018.09.011
[85]
Schmitt-Keichinger, C. (2019) Manipulating Cellular Factors to Combat Viruses: A Case Study from the Plant Eukaryotic Translation Initiation Factors eIF4. Frontiers in Microbiology, 10, Article No. 17. https://doi.org/10.3389/fmicb.2019.00017
[86]
Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A., Arazi, T. and Gal-On, A. (2016) Development of Broad Virus Resistance in Non-Transgenic Cucumber Using CRISPR/Cas9 Technology. Molecular Plant Pathology, 17, 1140-1153. https://doi.org/10.1111/mpp.12375
[87]
Richard, M., Chuffart, F., Duplus-Bottin, H., Pouyet, F., Spichty, M., Fulcrand, E., Entrevan, M., Barthelaix, A., Springer, M., Jost, D. and Yvert, G. (2018) Assigning Function to Natural Allelic Variation via Dynamic Modeling of Gene Network Induction. Molecular Systems Biology, 14, e7803. https://doi.org/10.1101/140467
[88]
Kang, B.-C., Yeam, I., Frantz, J.D., Murphy, J.F. and Jahn, M.M. (2005) The pvr1 Locus in Capsicum Encodes a Translation Initiation Factor eIF4E That Interacts with Tobacco Etch Virus VPg. The Plant Journal, 42, 392-405.
https://doi.org/10.1111/j.1365-313X.2005.02381.x
[89]
Stein, N., Perovic, D., Kumlehn, J., Pellio, B., Stracke, S., Streng, S., Ordon, F., et al. (2005) The Eukaryotic Translation Initiation Factor 4E Confers Multiallelic Recessive Bymovirus Resistance in Hordeum vulgare (L.). The Plant Journal, 42, 912-922.
https://doi.org/10.1111/j.1365-313X.2005.02424.x