全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一步水热合成具有高优异性能的W18O49纳米线/Ti3C2Tx纳米片复合材料用于超级电容器的相关研究
One-Step Hydrothermal Synthesis of W18O49 NWs/Ti3C2Tx Nanosheets Composites with Superior Performance for Advanced Supercapacitors

DOI: 10.12677/MS.2022.1210110, PP. 989-997

Keywords: 超级电容器,W18O49纳米线,W18O49/Ti3C2Tx复合电极材料
Supercapacitor
, W18O49 NWs, W18O49/Ti3C2TxTx Composite Electrode Material

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,超级电容器作为功率型能源储存装置因具有高功率密度、快速充放电速率、长循环寿命等优点,备受研究者们的关注,其优异性能的关键在于电极材料的选择。目前,W18O49纳米结构被誉为最有潜力的超级电容器电极材料。本文通过一步水热法成功合成海胆状的W18O49纳米结构,并在此基础上进一步合成W18O49纳米线/Ti3C2Tx纳米片复合材料。该材料不仅提高了W18O49纳米结构的导电性,同时抑制Ti3C2Tx纳米片的堆叠,从而显示出极好的储存性能。扫速为1 mV?s?1时,其比电容值为410 F?g?1;扫速在50 mV?s?1时,其比容量为349 F?g?1。在5 A?g?1的电流密度下,循环8000次的循环保持率为88%,有着优异的循环稳定性。本工作探究了复合材料作为超级电容器电极优越的电化学性能,为其在电化学储能器件中的应用提供了新的方向。
In recent years, as a power-based energy storage device, supercapacitors have attracted researchers’ attention due to their ad-vantages such as higher power density, fast charge and discharge rate and long cycle life. The key to their excellent performance lies in the selection of electrode materials. At present, W18O49 nanostructures are regarded as the most potential electrode material for supercapacitors. In this paper, sea urchin-like W18O49 nanostructures were successfully synthesized by one-step hydro-thermal method, and W18O49 NWs/Ti3C2Tx nanosheets composites were further synthesized on this basis. This material not only improves the electrical conductivity of W18O49 nanostructures, but also inhibits the stacking of Ti3C2Tx nanosheets, thus showing excellent storage performance. When the sweep speed is 1 mV?s?1, the specific capacitance value is 410 F?g?1; When the sweep speed is 50 mV?s?1, the specific capacity is 349 F?g?1. Under the current density of 5 A?g?1, the cycle retention rate of 8000 cycles is 88%, which has excellent stability. This work explores the superior electro-chemical performance of composite materials as electrodes for supercapacitors and provides a new direction for their application in electrochemical energy storage devices.

References

[1]  Li, X.X., Deng, X.H., Li, Q.J., et al. (2018) Hierarchical Double-Shelled Poly (3,4-ethylenedioxythiophene) and MnO2 Decorated Ni Nanotube Arrays for Durable and Enhanced Energy Storage in Supercapacitors. Electrochimica Acta, 264, 46-52.
https://doi.org/10.1016/j.electacta.2018.01.069
[2]  Liu, Z.Q., Cheng, H., Li, N., et al. (2016) ZnCo2O4 Quantum Dots Anchored on Nitrogen‐Doped Carbon Nanotubes as Reversible Oxygen Reduction/Evolution Electrocat-alysts. Advanced Materials, 28, 3777-3784.
https://doi.org/10.1002/adma.201506197
[3]  Li, X.X., Wang, X.T., Xiao, K., et al. (2018) In Situ Formation of Consubstantial NiCo2S4 Nanorod Arrays toward Self-Standing Electrode for High Activity Supercapacitors and Overall Water Splitting. Journal of Power Sources, 402, 116-123.
https://doi.org/10.1016/j.jpowsour.2018.09.021
[4]  Zhao, M.Q., Ren, C.E., Ling, Z., et al. (2015) Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance. Advanced Materials, 27, 339-345.
https://doi.org/10.1002/adma.201404140
[5]  Zhang, T., Wang, R., Xiao, J., et al. (2021) CoS Nanowires Grown on Ti3C2Tx Are Promising Electrodes for Supercapacitors: High Capacitance and Remarkable Cycle Capability. Journal of Colloid and Interface Science, 602, 123-130.
https://doi.org/10.1016/j.jcis.2021.06.011
[6]  Zheng, W., Halim, J., Ghazaly, A.E., et al. (2020) Flexible Free-Standing MoO3/Ti3C2Tz MXene Composite Films with High Gravimetric and Volumetric Capacities. Advanced Science, 8, Article ID: 2003656.
https://doi.org/10.1002/advs.202003656
[7]  Qiu, Y., Wang, Y. and Song, C. (2021) Facile Synthesis of W18O49/Graphene Nanocomposites for Highly Sensitive Ethanol Gas Sensors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 616, Article ID: 126300.
https://doi.org/10.1016/j.colsurfa.2021.126300
[8]  Zheng, X., Dong, X., Zhang, S., et al. (2020) Defect-Induced Ferromagnetism in W18O49 Nanowires. Journal of Alloys and Compounds, 818, Article ID: 152894.
https://doi.org/10.1016/j.jallcom.2019.152894
[9]  Jo, C., Hwang, J., Song, H., et al. (2013) Block‐Copolymer‐Assisted One‐Pot Synthesis of Ordered Mesoporous WO3?x/Carbon Nanocomposites as High‐Rate‐Performance Electrodes for Pseudocapacitors. Advanced Functional Materials, 23, 3747-3754.
https://doi.org/10.1002/adfm.201202682
[10]  Zhang, J., Zhang, H., Liu, L., et al. (2018) W18O49 Nanorods: Con-trolled Preparation, Structural Refinement, and Electric Conductivity. Chemical Physics Letters, 706, 243-246.
https://doi.org/10.1016/j.cplett.2018.06.002
[11]  Jung, J. and Kim, D.H. (2018) W18O49 Nanowires Assembled on Carbon Felt for Application to Supercapacitors. Applied Surface Science, 433, 750-755.
https://doi.org/10.1016/j.apsusc.2017.10.109
[12]  Ying, Z., Chen, S., Zhang, S., et al. (2019) Efficiently Enhanced N2 Photofixation Performance of Sea-Urchin-Like W18O49 Microspheres with Mn-Doping. Applied Catalysis B: Envi-ronmental, 254, 351-359.
https://doi.org/10.1016/j.apcatb.2019.05.005
[13]  Thalji, M.R., Ali, G.A.M., Liu, P., et al. (2021) W18O49 Nan-owires-Graphene Nanocomposite for Asymmetric Supercapacitors Employing AlCl3 Aqueous Electrolyte. Chemical En-gineering Journal, 409, Article ID: 128216.
https://doi.org/10.1016/j.cej.2020.128216
[14]  Tian, Y., Cong, S., Su, W., et al. (2014) Synergy of W18O49 and Polyaniline for Smart Supercapacitor Electrode Integrated with Energy Level Indicating Functionality. Nano Letters, 14, 2150-2156.
https://doi.org/10.1021/nl5004448
[15]  Jia, Y., Ma, Y., Tang, J., et al. (2019) Hierarchical W18O49-MoS2 Nanospheres with Enhanced Electrochemical Performance for Energy Storage. Journal of Nanoscience and Nanotechnology, 19, 2782-2788.
https://doi.org/10.1166/jnn.2019.16017
[16]  Bulin, C., Yu, H., Ge, X., et al. (2017) Preparation and Supercapacitor Performance of Functionalized Graphene Aerogel Loaded with Polyaniline as a Freestanding Electrode. Journal of Mate-rials Science, 52, 5871-5881.
https://doi.org/10.1007/s10853-017-0823-1
[17]  Thalji, M.R., Ali, G.A.M., Algarni, H., et al. (2019) Al3+ Ion In-tercalation Pseudocapacitance Study of W18O49 Nanostructure. Journal of Power Sources, 438, Article ID: 227028.
https://doi.org/10.1016/j.jpowsour.2019.227028
[18]  Ambade, S.B., Ambade, R.B., Eom, W., et al. (2018) 2D Ti3C2MXene/WO3 Hybrid Architectures for High-Rate Supercapacitors. Advanced Materials Interfaces, 5, Article ID: 1801361.
https://doi.org/10.1002/admi.201801361
[19]  Conway, B.E. (1991) Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage. Journal of the Electrochemical Society, 138, Article No. 1539.
https://doi.org/10.1149/1.2085829
[20]  Lukatskaya, M.R., Bak, S.M., Yu, X., et al. (2015) Probing the Mechanism of High Capacitance in 2D Titanium Carbide Using in Situ X‐Ray Absorption Spectroscopy. Advanced Energy Materials, 5, Article ID: 1500589.
https://doi.org/10.1002/aenm.201500589
[21]  Ashraf, M., Shah, S.S., Khan, I., et al. (2021) A High‐Performance Asymmetric Supercapacitor Based on Tungsten Oxide Nanoplates and Highly Reduced Graphene Oxide Electrodes. Chemistry—A European Journal, 27, 6973-6984.
https://doi.org/10.1002/chem.202005156
[22]  Huang, Y., Li, Y., Zhang, G., et al. (2019) Simple Synthesis of 1D, 2D and 3D WO3 Nanostructures on Stainless Steel Substrate for High-Performance Supercapacitors. Journal of Alloys and Compounds, 778, 603-611.
https://doi.org/10.1016/j.jallcom.2018.11.212

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133