全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于嵌入式图像处理系统的水产养殖轨迹跟踪
Trajectory Tracking of Aquatic Fish Breeding Based on Embedded Image Processing System

DOI: 10.12677/JISP.2022.114020, PP. 202-210

Keywords: 图像处理,轨迹跟踪,嵌入式系统,鱼类跟踪,运动目标检测
Image Processing
, Trajectory Tracking, Embedded System, Fish Tracking, Moving Target Detection

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前,在传统水产养殖向产业化、集约化发展的过程中,监测技术与方法是薄弱环节,因此,研究和应用水产养殖轨迹跟踪技术具有重要意义。本文主要研究了基于嵌入式图像处理系统的水产养殖轨迹跟踪技术,提出了一种水产养殖在线监测系统的设计方案。该系统基于嵌入式技术,结合GSM/GPRS通信和射频无线传输技术,主要实现对水生鱼类的实时轨迹跟踪和监控。智能化设计使监控人员能够根据异常数据及时采取有效措施。本文的实验数据表明,在X轴速度为300 mm/min的条件下,水产养殖轨迹跟踪系统的跟踪误差达到0.5 mm或更小,满足设计要求。该系统结构简单,功能易于扩展,测量数据误差小,适用于水产养殖产业化领域。
At present, the monitoring techniques and methods are weak in the process of traditional aquatic fish farming towards industrialization and intensive development, so the research and implementation of aquatic fish farming trajectory tracking technology are of great significance. This paper mainly studies the tracking of aquatic fish farming based on an embedded image processing system and proposes a design scheme for an aquaculture online monitoring system. This system is based on embedded technology, combined with GSM/GPRS communication and radio frequency wireless transmission technology, and mainly realizes real-time trajectory tracking and monitoring of aquatic fish. The intelligent design enables monitoring personnel to take effective measures in time according to abnormal data. The experimental data of this paper shows that the tracking error of the aquatic fish breeding trajectory tracking system reached 0.5 mm or less under the condition of an X-axis speed of 300 mm/min, which meets the design requirements. The experimental results in this paper show that the system is simple in structure, easy to expand in function, have small errors in the measured data and, is suitable for the field of industrialized aquatic fish breeding.

References

[1]  Hu, X.F., Feng, G., Duan, S.K. and Liu, L. (2017) A Memristive Multilayer Cellular Neural Network with Applications to Image Processing. IEEE Transactions on Neural Networks & Learning Systems, 28, 1889-1901.
https://doi.org/10.1109/TNNLS.2016.2552640
[2]  Ilmini, K. and Fernando, T. (2016) Persons’ Personality Traits Recognition Using Machine Learning Algorithms and Image Processing Techniques. Advances in Computer Science, 5, 40-44.
[3]  Liu, T., Wu, W., Chen, W., Sun, C.M., Zhu, X.K. and Guo, W.S. (2016) Automated Image-Processing for Counting Seedlings in a Wheat Field. Precision Agriculture, 17, 392-406.
https://doi.org/10.1007/s11119-015-9425-6
[4]  Kamoshida, Y., Nyukai, J., Habuka, K. and Hiraga, M. (2017) Image Processing Device, Image Processing Method and Storage Medium. Fluessiges Obst, 2, 1-18.
[5]  Aoki, K. (2018) Server for Implementing Image Processing Functions Requested by a Printing Device. Environmental Pollution, 152, 543-552.
[6]  Mortari, D., D’Souza, C.N. and Zanetti, R. (2016) Image Processing of Illuminated Ellipsoid. Journal of Spacecraft & Rockets, 53, 448-456.
https://doi.org/10.2514/1.A33342
[7]  Pu, J., Bell, S., Yang, X., Setter, J., Richardson, S. and Ragan-Kelley, J. and Horowitz, M. (2016) Programming Heterogeneous Systems from an Image Processing Dsl. Acm Transactions on Architecture & Code Optimization, 14, Article No. 26.
https://doi.org/10.1145/3107953
[8]  Satoh, J., Yamagishi, K., Nakashima, K., Katsura, K., Miyamoto, T., Watabe, M. and Ohmura, K. (2000) Data Processing System and Image Processing System. European Patent No. 99124662.0.
[9]  Kumari, D. and Kaur, K. (2016) A Survey on Stereo Matching Techniques for 3D Vision in Image Processing. International Journal of Engineering & Manufacturing, 6, 40-49.
https://doi.org/10.5815/ijem.2016.04.05
[10]  Noguchi, T., Shibara, T., Toemura, T., Ogino, M. and Murashita, K. (2018) Ultrasonic Diagnostic Apparatus and Image Processing Method. Japanese Patent No. 2017520689.
[11]  Yamada, K. (2016) Image Processing Method, Image Processing Device, and Image Processing Program. Fuji Xerox, 63, 189-197.
[12]  Green, N., Glatt, V., Tetsworth, K., Wilson, L.J. and Grant, C.A. (2016) A Practical Guide to Image Processing in the Creation of 3D Models for Orthopedics. Techniques in Orthopaedics, 31, 153-163.
https://doi.org/10.1097/BTO.0000000000000181

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133