|
基于深度学习的高铁电线杆及杆号检测与识别方法
|
Abstract:
面向高铁电线杆智能监测任务,提出一种基于YOLOv3的端到端的高铁电线杆自动检测及杆号识别算法。该算法首先对电线杆及杆号区域进行检测,并根据杆号区域检测坐标自动裁剪,然后识别杆号区域中的数字,最后将电线杆检测结果与数字识别结果自动结合。通过构建高铁电线杆图像数据集以及杆号区域数据集,进行大量实验。实验结果表明,我们提出的方法对电线杆及杆上编号的检测与识别准确率分别达到了97.50%、95.30%,能有效地完成高铁最优电线杆及杆号的自动检测任务。
This work offers an end-to-end automatic detection of poles and number identification technique in high-speed railway based on YOLOv3 for the intelligent monitoring task of poles in high-speed rail-way. To begin, the algorithm recognizes the pole and the number area, then crops automatically based on the detection findings of the number area’s coordinates. Then identify the numbers in the number area. Finally, the results of the pole detection and number identification are integrated automatically. By building the picture data set of poles and number region in high-speed railway, a great number of experiments were carried out. The experimental results show that the proposed method’s detection and recognition accuracy for the pole and the number on the pole is 97.50% and 95.30%, respectively, indicating that it can effectively complete the automatic detection tasks of the most optimal pole and the number on the pole in high-speed railways.
[1] | Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. (2016) You Only Look Once: Unified, Real-Time Object Detec-tion. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 27-30 June 2016, 779-788. https://doi.org/10.1109/CVPR.2016.91 |
[2] | Redmon, J. and Farhadi, A. (2017) YOLO9000: Bet-ter, Faster, Stronger. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 21-26 July 2017, 6517-6525.
https://doi.org/10.1109/CVPR.2017.690 |
[3] | Redmon, J. and Farhadi, A. (2018) YOLOv3: An Incremental Im-provement. Computer Science. arXiv: 1804.02767.
http://arxiv.org/abs/1804.02767 |
[4] | Ren, S.Q., He, K.M., Girshick, R. and Sun, J. (2017) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans on Pattern Analysis and Machine Intelligence, 39, 1137-1149.
https://doi.org/10.1109/TPAMI.2016.2577031 |
[5] | Girshick, R. (2015) Fast R-CNN. Proceedings of the 2015 IEEE International Conference on Computer Vision and Pattern Recognition, Santiago, 7-13 December 2015, 1440-1448. https://doi.org/10.1109/ICCV.2015.169 |
[6] | Girshick, R., Donahue, J., Darrell, T. and Malik, J. (2016) Region-Based Convolutional Networks for Accurate Object Detection and Segmentation. IEEE Trans on Pattern Analysis and Machine Intelligence, 38, 142-158.
https://doi.org/10.1109/TPAMI.2015.2437384 |
[7] | Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., et al. (2016) SSD: Single Shot MultiBox Detector, European Conference on Computer Vision 2016, Amsterdam, 11-14 October 2016, 21-37.
https://doi.org/10.1007/978-3-319-46448-0_2 |
[8] | 谢兴阳, 余阳, 任峰. 基于窄带频率激励和先进信号处理技术的新型电线杆无损检测系统研究[J]. 自动化与仪器仪表, 2017(1): 105-106+109. https://doi.org/10.14016/j.cnki.1001-9227.2017.01.105 |
[9] | 李涛, 陈黎, 聂晖. 基于改进线段分割检测的电线杆遮挡检测算法[J]. 计算机工程, 2017, 43(9) : 250-255.
https://doi.org/10.3969/j.issn.1000-3428.2017.09.044 |
[10] | 江南, 李怡然, 黄毅标, 张海滨, 孔令一, 黄超, 等. 基于绝缘子的高空电线杆损坏检测技术[J]. 机械设计与制造工程, 2019, 48(3): 107-111. https://doi.org/10.3969/j.issn.2095-509X.2019.03.025 |
[11] | 刘志浩, 冯柳平, 曹晓鹤. 基于深度学习的电线杆检测方法[J]. 北京印刷学院学报, 2016, 24(6): 44-47+52.
https://doi.org/10.19461/j.cnki.1004-8626.2016.06.011 |
[12] | 庞宁. 基于深度学习的输电线杆塔鸟巢检测与识别[J]. 自动化与仪器仪表, 2020(4): 195-198+204.
https://doi.org/10.14016/j.cnki.1001-9227.2020.04.195 |
[13] | 刘凯歌, 王琪, 孟祥越, 张祥德. 基于改进Faster R-CNN的被遮挡电线杆检测算法[J]. 无线电工程, 2021, 51(7): 540-545. |
[14] | Liu, J. and Zhang, D.Q. (2020) Re-search on Vehicle Object Detection Algorithm Based on Improved YOLOv3 Algorithm. Journal of Physics: Conference Series, 1575, Article ID: 012150.
https://doi.org/10.1088/1742-6596/1575/1/012150 |
[15] | Dou, H.Z., Zhang, H.Y. and Li, B. (2021) A Fast Traffic Sign Detection Algorithm Based on Modified YOLOv3. Journal of Physics: Conference Series, 1880, Article ID: 012025. https://doi.org/10.1088/1742-6596/1880/1/012025 |
[16] | Gao, D.Y., Gao, T.Y., Shi, S.S., Zhang, Z.C. and Ding, Z. (2020) Research on Traffic Information Detection of the Visually Impaired Based on Improved YOLOv3. Journal of Physics: Conference Series, 1802, Article ID: 032026.
https://doi.org/10.1088/1742-6596/1802/3/032026 |
[17] | Hartigan, J.A. and Wong, M.A. (1979) Algorithm AS 136: A K-Means Clustering Algorithm. Journal of the Royal Statistical Society, 28, 100-108. https://doi.org/10.2307/2346830 |
[18] | Shelhamer, E., Long, J. and Darrell, T. (2017) Fully Convolutional Net-works for Semantic Segmentation. IEEE Trans on Pattern Analysis and Machine Intelligence, 39, 640-651. https://doi.org/10.1109/TPAMI.2016.2572683 |
[19] | Abadi, M., Agarwal, A., Barham, P., et al. (2016) Tensor-flow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv Preprint arXiv:1603.04467. |