It is important to look at the behaviour of a living system from the point of view of the biophysical paradigm. In fact, the chemical reactions, which allow us to understand how metabolic processes take place, are short-range and they are activated at a distance of one atomic or molecular diameter. 100,000 reactions/sec. take place in a cell, perfectly balanced in space and time, i.e. these happen at the right time and in the right place. So, it is chemically inexplicable how this can be possible, because it is absolutely necessary that molecules recognize each other at distances greater than a molecular diameter. The biophysical paradigm, through coherent resonance mechanisms, tries to explain how molecules can recognize each other “from afar”. It is a matter of beginning to understand that, probably, the same atoms and molecules are endowed with a kind of “intrinsic intelligence” that guides them in their interactions, and the key to understanding can only be of physical type. We can also hypothesize that a cellular information mechanism based on endogenous electromagnetic fields exists. In this way, DNA could play a role of in-out antenna, due to its double helix shape (resonant LC circuit). This paper speaks about these unexpected, but not too many, connections between Physics and Biology.
References
[1]
Bransden, B.H. and Joachain, C.J. (1984) Physics of Atoms and Molecule. Longman Group Limited Publisher, Harlow.
[2]
Majorana, E. and Sasso, A. (2006) On the Formation of Molecular Helium Ion. In: Bassani, G.F., Ed., Ettore Majorana: Scientific Papers. Springer, Berlin. https://link.springer.com/chapter/10.1007/978-3-540-48095-2_3
[3]
Poincaré, J.H. (2012) La scienza e l’ipotesi. Dedalo, Bari. (In Italian)
[4]
Von Baeyer, H.C. (2004) Information: The New Language of Science. Harvard University Press, Cambridge.
[5]
Clark, A.J. (1933) Mode of Action of Drugs on Cells. Arnold, London.
[6]
Paton, W.D. (1960) The Principles of Drug Action. Proceedings of the Royal Society of Medicine, 53, 815-820. https://doi.org/10.1177/003591576005301002
[7]
Rowlands, S. (1988) The Interaction of Living Red Blood Cells. In: Frölich, H., Ed., Biological Coherence and Response to External Stimuli, Springer-Verlag, Berlin, 171-191. https://doi.org/10.1007/978-3-642-73309-3_10
[8]
Bistolfi, F. (1989) Radiazioni non ionizzanti: Ordine, disordine e biostrutture. Minerva Medica, Torino.
[9]
Preparata, G. (1995) QED Coherence in Matter. World Scientific Publishing, Singapore. https://doi.org/10.1142/2738
[10]
Preparata, G. (2002) Dai quark ai cristalli. Breve storia di un lungo viaggio dentro la materia. Bollati Boringhieri, Torino.
[11]
Popp, F.A. (2002) Biophotonics—A Powerful Tool for Investigating and Understanding Life. In: Dürr, H.P., Popp, F.A., Schommers, W., Eds., What Is Life? Scientific Approaches and Philosophical Positions, World Scientific Publishing, Singapore, 279-306. https://doi.org/10.1142/9789812706560_0013
[12]
Van Wijk, R. (2003) Cellular and Molecular Aspects of Integrative Biophysics. In: Popp, F.A. and Beloussov, L.V., Eds., Integrative Biophysic: Biophotonics, Springer-Verlag, Berlin, 179-201. https://doi.org/10.1007/978-94-017-0373-4_4
[13]
Bischof, M. and Del Giudice, E. (2013) Communication and the Emergence of Collective Behaviour in Living Organisms: A Quantum Approach. Molecular Biology International, 2013, Article ID: 987549. https://doi.org/10.1155/2013/987549
[14]
Del Giudice, E., Doglia, S., Milani, M. and Vitiello, G. (1988) Structures Connection and Electromagnetic Interaction in Living Matter. In: Frölich, H., Ed., Biological Coherence and Response to External Stimuli, Springer-Verlag, Berlin, 49-64. https://doi.org/10.1007/978-3-642-73309-3_3
[15]
Colli, L. and Facchini, U. (1954) Light Emission by Germinating Plants. Il Nuovo Cimento, 12, 150-153. https://doi.org/10.1007/BF02820374
[16]
Musumeci, F. (2003) Physical Basis and Applications of Delayed Luminescence. In: Popp, F.A. and Beloussov, L., Eds., Integrative Biophysics: Biophotonics, Springer-Verlag, Berlin, 203-230. https://doi.org/10.1007/978-94-017-0373-4_5
[17]
Cordone, L., Privitera, G., Tudisco, S. and Musumeci, F. (2003) Delayed Luminescence and Motional Harmonicity. In: Musumeci, F., Brizhik, L.S., Ho, M.-W., Eds., Energy and Information Transfer in Biological Systems, World Scientific Publishing, Singapore, 14-23. https://doi.org/10.1142/9789812705181_0002
[18]
Niggli, H.J. and Applegate, N.A. (2003) Biophotons: Ultraweak Photons in Cells. In: Popp, F.A. and Beloussov, L., Eds., Integrative Biophysics: Biophotonics, Springer-Verlag, Berlin, 361-385. https://doi.org/10.1007/978-94-017-0373-4_11
[19]
Rahnama, M., Tuszynski, J.A., Bokkon, I., Cifra, M., Sardar, P. and Salari, V. (2011) Emission of Mitochondrial Biophotons and Their Effect on Electrical Activity of Membrane via Microtubules. Journal of Integrative Neuroscience, 10, 65-88. https://doi.org/10.1142/S0219635211002622
[20]
Chen, X., Wu, T., Gong, Z., Guo, J., Liu, X., Zhang, Y., Li, Y., Ferraro, P. and Li, B. (2021) Lipid Droplets as Endogenous Intracellular Microlenses. Light: Science & Applications, 10, Article No. 242. https://doi.org/10.1038/s41377-021-00687-3 https://www.nature.com/articles/s41377-021-00687-3
[21]
Frauenfelder, H., Petsko, G.A. and Tsernoglou, D. (1979) Temperature-Dependent X-Ray Diffraction as a Probe of Protein Structural Dynamics. Nature, 280, 558-563. https://doi.org/10.1038/280558a0
[22]
Parak, F., Frolov, E.N., Mössbauer, R.L. and Goldanskii, V.I. (1981) Dynamics of Metmyoglobin Crystals Investigated by Nuclear Gamma Resonance Absorption. Journal of Molecular Biology, 145, 825-833. https://doi.org/10.1016/0022-2836(81)90317-X
[23]
Knapp, E.W., Fischer, S.F. and Parak, F. (1983) The Influence of Protein Dynamics on Mössbauer Spectra. The Journal of Chemical Physics, 78, Article No. 4701. https://doi.org/10.1063/1.445316
[24]
Wagner, G., Pardi, A. and Wuethrich, K. (1983) Hydrogen Bond Length and Proton NMR Chemical Shifts in Proteins. Journal of the American Chemical Society, 105, 5948-5949. https://doi.org/10.1021/ja00356a056
[25]
Bu, Z. and Callaway, D.J. (2011) Proteins Move! Protein Dynamics and Long-Range Allostery in Cell Signaling. Advances in Protein Chemistry and Structural Biology, 83, 163-221. https://doi.org/10.1016/B978-0-12-381262-9.00005-7
[26]
Srinivasan, B., Forouhar, F., Shukla, A., Sampangi, C., Kulkarni, S., Abashidze, M., Seetharaman, J., Lew, S., Mao, L., Acton, T.B., Xiao, R., Everett, J.K., Montelione, G.T., Tong, L. and Balaram, H. (2014) Allosteric Regulation and Substrate Activation in Cytosolic Nucleotidase II from Legionella pneumophila. The FEBS Journal, 281, 1613-1628. https://doi.org/10.1111/febs.12727
[27]
Cuendet, M.A., Weinstein, H. and LeVine, M.V. (2014) The Allostery Landscape: Quantifying Thermodynamic Coupling in Biomolecular Systems. Journal of Chemical Theory and Computation, 12, 5758-5767. https://doi.org/10.1021/acs.jctc.6b00841
[28]
Tripathi, A. and Bankaitis, V.A. (2017) Molecular Docking: From Lock and Key to Combination Lock. Journal of Molecular Medicine and Clinical Applications, 2, 1-9. https://doi.org/10.16966/2575-0305.106 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5764188/pdf/nihms856098.pdf
[29]
Al-Khalili, J. and McFadden, J. (2014) Life on the Edge: The Coming of Age of Quantum Biology. Bantam Press, London.
[30]
Mantegna, R.N., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Peng, C.-K., Simons, M. and Stanley, H.E. (1994) Linguistic Features of Noncoding DNA Sequences. Physical Review Letters, 73, 3169-3172. https://doi.org/10.1103/PhysRevLett.73.3169
[31]
Blank, M. and Goodman, R. (2011) DNA Is a Fractal Antenna in Electromagmetic Fields. International Journal of Radiation Biology, 87, 409-415. https://doi.org/10.3109/09553002.2011.538130
[32]
Montagnier, L., Del Giudice, E., Aïssa, J., Lavallee, C., Motschwiller, S., Capolupo, A., Polcari, A., Romano, P., Tedeschi, A. and Vitiello, G. (2015) Transduction of DNA Information through Water and Electromagnetic Waves. Electromagnetic Biology and Medicine, 34, 106-112. https://doi.org/10.3109/15368378.2015.1036072
[33]
Doerfler, W. (2017) DNA and Its Epigenetic Potential, an Antenna for Cosmic Emission: Driving Force in Evolution and Energy Transmission? Journal of Clinical Epigenetics, 3, Article No. 9. https://www.linkwitzlab.com/Fitz/J.%20Clinical%20Epigenetics%203,%202017.pdf
[34]
Sussmann, J.A. (1964) Phonon Induced Tunneling of Ions in Solids. Physik derKondensierten Materie, 2, 146-160. https://doi.org/10.1007/BF02422872
[35]
Pethig, R. (1979) Dielectric and Electronic Properties of Biological Materials. John Wiley & Sons Ltd., Hoboken.
[36]
Bukhari, M.H., Batool, S., Raza, D.Y., Bagasra, O., Rizvi, A., Shah, A., Razzaki, T. and Sultan, T. (2018) DNA Electromagnetic Properties and Interactions—An Investigation on Intrinsic Bioelectromagnetism within DNA. Electromagnetic Biology and Medicine, 37, 169-174. https://doi.org/10.1080/15368378.2018.1499032