全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

JWST Discoveries—Confirmation of World-Universe Model Predictions

DOI: 10.4236/jhepgc.2022.84080, PP. 1134-1154

Keywords: James Webb Space Telescope, World-Universe Model, Medium, Angular Momentum, Dark Matter, Dark Epoch, Luminous Epoch, Rotational Fission, Patchwork Quilt, Early-Galaxies, Inter-Connectivity of Primary Cosmological Parameters

Full-Text   Cite this paper   Add to My Lib

Abstract:

In 1937, P. Dirac proposed the Large Number Hypothesis and Hypothesis of Variable Gravitational Constant [1], and later added notion of Continuous Creation of Matter in the World [2]. Developed Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing different mechanism of Matter creation. Most direct observational evidence of validity of WUM are: 1) Microwave Background Radiation and Intergalactic Plasma speak in favor of existence of Medium; 2) Laniakea Supercluster with binding mass ~1017M is home to Milky Way (MW) galaxy and ~105 other nearby galaxies, which did not start their movement from Initial Singularity (see Figure 1); 3) MW is gravitationally bounded with Virgo Supercluster (VSC) and has Orbital Angular Momentum calculated based on distance of 65 Mly from VSC and orbital speed of ~400 km·s-1, which far exceeds rotational angular momentum of MW; 4) Mass-to-light ratio of VSC is ~300 times larger than that of Solar ratio. Similar ratios are obtained for other superclusters (see Figure 2). These ratios are main arguments in favor of the presence of tremendous amounts of Dark Matter (DM) in the World. JWST discoveries confirm the most important predictions of WUM in 2018: 1) Absolute Age of World is 14.22 Gyr; 2) Dark Epoch (spanning for Laniakea Supercluster (LSC) from the Beginning of World for 0.45 Gyr) when only DM Macroobjects (MOs) form and evolve; 3) Luminous Epoch (ever since, 13.77 Gyr for LSC) when Luminous MOs (superclusters, galaxies, extrasolar systems, etc.) emerge; 4) Transition from Dark Epoch to Luminous Epoch is due to Explosive Rotational Fission of Overspinning (surface speed at equator exceeding escape velocity) DM Supercluster’s Cores and self-annihilation of DM Particles (DMPs); 5) MOs of World form from top (Superclusters) down to Galaxies and Extrasolar systems in parallel around different Cores made up of different DMPs; 6) 3D Finite Boundless World presents a Patchwork Quilt of different Luminous Superclusters, which emerged in different places of World at different Cosmological times.

References

[1]  Dirac, P.A.M. (1938) A New Basis for Cosmology. Proceedings of the Royal Society of London A, 165, 199-208.
https://doi.org/10.1098/rspa.1938.0053
[2]  Dirac, P.A.M. (1974) Cosmological Models and the Large Numbers Hypothesis. Proceedings of the Royal Society of London A, 338, 439-446.
https://doi.org/10.1098/rspa.1974.0095
[3]  Tully, R.B., Courtois, H., Hoffman, Y. and Pomarède, D. (2014) The Laniakea Supercluster of Galaxies. Nature, 513, 71-73. arXiv: 1409.0880.
https://doi.org/10.1038/nature13674
[4]  Netchitailo, V.S. (2022) Review Article: Cosmology and Classical Physics. Journal of High Energy Physics, Gravitation and Cosmology, 8, 1037-1072.
https://doi.org/10.4236/jhepgc.2022.84074
[5]  Netchitailo V.S. (2013) Word-Universe Model. viXra: 1303.0077v7.
https://vixra.org/abs/1303.0077
[6]  Netchitailo V.S. (2013) Fundamental Parameter Q. Recommended Values of the Newtonian Parameter of Gravitation, Hubble’s Parameter, Age of the World, and Temperature of the Microwave Background Radiation. viXra: 1312.0179v2.
https://vixra.org/abs/1312.0179
[7]  Li, Q., Xue, C., Liu, J.-P., Wu, J.-F., Yang, S.-Q., Shao, C.-G., et al. (2018) Measurements of the Gravitational Constant Using Two Independent Methods. Nature, 560, 582-588.
https://doi.org/10.1038/s41586-018-0431-5
[8]  NASA Education/Graphics (2021) Hubble Constant H0.
https://lambda.gsfc.nasa.gov/education/graphic_history/hubb_const.cfm
[9]  Fixsen, D.J. (2009) The Temperature of the Cosmic Microwave Background. The Astrophysical Journal, 707, 916-920. arXiv: 0911.1955.
https://doi.org/10.1088/0004-637X/707/2/916
[10]  Shemmer, O., Netzer, H., Maiolino, R., Oliva, E., Croom, S., Corbett, E., et al. (2004) Near Infrared Spectroscopy of High Redshift Active Galactic Nuclei. I. A Metallicity-Accretion Rate Relationship. The Astrophysical Journal, 614, 547-557. arXiv: 0406559.
https://doi.org/10.1086/423607
[11]  Koposov, S. E., et al. (2019) The Great Escape: Discovery of a nearby 1700 km/s Star Ejected from the Milky Way by Sgr A*. Monthly Notices of the Royal Astronomical Society, 491, 2465-2480. arXiv: 1907.11725.
[12]  Clarke, C.J., et al. (2018) High-Resolution Millimeter Imaging of the CI Tau Protoplanetary Disk: A Massive Ensemble of Protoplanets from 0.1 to 100 au. The Astrophysical Journal Letters, 866, Article No. L6.
https://doi.org/10.3847/2041-8213/aae36b
[13]  National Aeronautics and Space Administration (2015) The Cosmic Distance Scale.
https://imagine.gsfc.nasa.gov/features/cosmic/local_supercluster_info.html
[14]  Netchitailo, V. (2019) Solar System. Angular Momentum. New Physics. Journal of High Energy Physics, Gravitation and Cosmology, 5, 112-139.
https://doi.org/10.4236/jhepgc.2019.51005
[15]  Heymans, C., Gray, M.E., Peng, C.Y., Van Waerbeke, L., Bell, E.F., Wolf, C., et al. (2008) The Dark Matter Environment of the Abell 901/902 Supercluster: A Weak Lensing Analysis of the HST STAGES Survey. Monthly Notices of the Royal Astronomical Society, 385, 1431-1442. arXiv: 0801.1156.
https://doi.org/10.1111/j.1365-2966.2008.12919.x
[16]  Zwicky, F. (1933) Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta, 6, 110-127.
[17]  Mehrgan, K., et al. (2019) A 40-Billion Solar Mass Black Hole in the Extreme Core of Holm 15A, the Central Galaxy of Abell 85. The Astrophysical Journal, 887, Article No. 195. arXiv: 1907.10608.
https://doi.org/10.3847/1538-4357/ab5856
[18]  Carr, B., Kühnel, F. and Visinelli, L. (2021) Constraints on Stupendously Large black Holes. Monthly Notices of the Royal Astronomical Society, 501, 2029-2043.
https://doi.org/10.1093/mnras/staa3651
[19]  Wang, P., Libeskind, N.I., Tempel, E., Kang, X. and Guo, Q. (2021) Possible Observational Evidence That Cosmic Filaments Spin. Nature Astronomy, 5, 839-845, arXiv: 2106.05989.
https://doi.org/10.1038/s41550-021-01380-6
[20]  Boardman, L. (2021) Discovery of a Giant Arc in Distant Space Adds to Challenges to Basic Assumptions about the Universe. University of Central Lancashire, Preston.
https://www.star.uclan.ac.uk/~alopez/aas238_press_release.pdf
[21]  NASA Science, Space Place (2019) How Old Are Galaxies?
https://spaceplace.nasa.gov/galaxies-age/en/#:~:text=Most%20galaxies%20are%20between%2010,the%20universe%20was%20quite%20young
[22]  Yan, H., Ma, Z.Y., Ling, C.X.J., Cheng, C., Huang, J.-S. and Zitrin, A. (2022) First Batch of Candidate Galaxies at Redshifts 11 to 20 Revealed by the James Webb Space Telescope Early Release Observations. arXiv: 2207.11558.
[23]  Achenbach J. (2022) Webb Telescope Is Already Challenging What Astronomers Thought They Knew.
https://www.washingtonpost.com/science/2022/08/26/webb-telescope-space-jupiter-galaxy/
[24]  Naidu, R.P., Oesch, P.A., van Dokkum, P., Nelson, E.J., Suess, K.A., Whitaker, K.E., et al. (2022) Two Remarkably Luminous Galaxy Candidates at z≈11-13 Revealed by JWST. arXiv: 2207.09434.
[25]  Labbe, I., van Dokkum, P., Nelson, E., Bezanson, R., Suess, K., Leja, J., et al. (2022) A Very Early onset of Massive Galaxy Formation. arXiv: 2207.12446.
[26]  Donnan, C.T., McLeod, D.J., Dunlop, J.S., McLure, R.J., Carnall, A.C., Begley, R., et al. (2022) The Evolution of the Galaxy UV Luminosity Function at Redshifts z = 8-15 from Deep JWST and Ground-Based Near-Infrared Imaging. arXiv: 2207.12356v1.
[27]  Zavala, J.A., Buat, V., Casey, C.M., Burgarella, D., Finkelstein, S.L., Bagley, M.B., et al. (2022) A Dusty Starburst Masquerading as an Ultra-High Redshift Galaxy in JWST CEERS Observations. arXiv: 2208.01816v1.
[28]  Ferrara, A., Pallottini, A., and Dayal, P. (2022) On the Stunning Abundance of Super-Early, Massive Galaxies Revealed by JWST. arXiv: 2208.00720.
[29]  Ono, Y., Harikane, Y., Ouchi, M., Yajima, H., Abe, M., Isobe, Y., et al. (2022) Morphologies of Galaxies at z≃9-17 Uncovered by JWST/NIRCam Imaging: Cosmic Size Evolution and an Identification of an Extremely Compact Bright Galaxy at z~12. arXiv: 2208.13582.
[30]  Ziparo, F., Ferrara, A., Sommovigo, L. and Kohandel, M. (2022) Blue Monsters. Why are JWST Super-Early, Massive Galaxies So Blue? arXiv: 2209.06840.
[31]  Bennett, C.L., Larson, D., Weiland, J.L., Jarosik, N., Hinshaw, G., Odegard, N., et al. (2013) Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. The Astrophysical Journal Supplement Series, 208, Article No. 20, arXiv: 1212.5225.
https://doi.org/10.1088/0067-0049/208/2/20
[32]  Star Facts (2020) Methuselah Star.
https://www.star-facts.com/methuselah-star/
[33]  Bond, H.E., Nelan, E.P., VandenBerg, D.A., Schaefer, G.H. and Harmer, D. (2013) HD 140283: A Star in the Solar Neighborhood that Formed Shortly After the Big Bang. The Astrophysical Journal Letters, 765, Article No. L12, arXiv: 1302.3180.
https://doi.org/10.1088/2041-8205/765/1/L12
[34]  Wikipedia (2022) SMSS J031300.36-670839.3.
https://en.wikipedia.org/wiki/SMSS_J031300.36%E2%88%92670839.3
[35]  Netchitailo, V. (2022) Decisive Role of Dark Matter in Cosmology. Journal of High Energy Physics, Gravitation and Cosmology, 8, 115-142.
https://doi.org/10.4236/jhepgc.2022.81009
[36]  Herschel Space Observatory (2022) Cosmic Dust.
https://herscheltelescope.org.uk/science/infrared/dust/#:~:text=Dust%20is%20formed%20in%20stars,of%20stars%20begins%20to%20form

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133