全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ISFET Based Immunosensor

DOI: 10.4236/ojbiphy.2022.124010, PP. 223-233

Keywords: Biosensor, ISFET, Antibody, Virus, Sensitivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

A new design of an immunosensor for viral molecules based on the ISFET nanoscale structure has been proposed. Physical processes take place inimmunosensor are modeled. The effect of modulation of the surface potential of the interface between a semiconductor depleted layer (channel) and a dielectric during the interaction and immobilization of viral molecules was used. Analytical expression for the source-drain current of ISFET as a function of virus types and concentration is presented and analyzed. Dependency of the source-drain current vs. concentration of viruses is analyzed for the COVID-19 virus.

References

[1]  Bergveld, P. (1970) Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements. IEEE Transactions on Biomedical Engineering, BME-17, 70-71.
https://doi.org/10.1109/TBME.1970.4502688
[2]  Bergveld, P. (1986) The Development and Application of FET-Based Biosensors. Biosensors, 2, 15-33.
https://doi.org/10.1016/0265-928X(86)85010-6
[3]  Lee, C.-S., Kim, S.K. and Kim, M. (2009) Ion-Sensitive Field-Effect Transistor for Biological Sensing. Sensors, 9, 7111-7131.
https://doi.org/10.3390/s90907111
[4]  Zachariah, E.S., Gopalakrishnakone, P. and Neuzil, P. (2006) Immunologically Sensitive Field-Effect Transistors. In: Webster, J.G., Ed., Encyclopedia of Medical Devices and Instrumentation, John Wiley & Sons, Inc., Hoboken, 98-110.
https://doi.org/10.1002/0471732877.emd141
[5]  Selvanayagam, Z.E., Neuzil, P., Gopalakrishnakone, P., Sridhar, U., Singh, M. and Ho, L.C. (2002) An ISFET-Based Immunosensor for the Detection of β-Bungarotoxin. Biosensors and Bioelectronics, 17, 821-82.
https://doi.org/10.1016/S0956-5663(02)00075-1
[6]  Saengdee, P., Chaisriratanakul, W., Bunjongpru, W., et al. (2016) A Silicon Nitride ISFET Based Immunosensor for Ag85B Detection of Tuberculosis. The Analyst, 141, 5767-5775.
https://doi.org/10.1039/C6AN00568C
[7]  Vozgirdaite, D., Halima, H.B., Bellagambi, F.G., et al. (2021) Development of an ImmunoFET for Analysis of Tumour Necrosis Factor-α in Artificial Saliva: Application for Heart Failure Monitoring. Chemosensors, 9, Article No. 26.
https://doi.org/10.3390/chemosensors9020026
[8]  Hosseini, M., Fathollahzadeh, M., Kolahdouz, M., Rostamian, A., Mahmoodian, M., Samaeian, A. and Radamson, H.H. (2018) ISFET Immunosensor Improvement Using Amine-Modified Polystyrene Nanobeads. Journal of Solid State Electrochemistry, 22, 3161-3169.
https://doi.org/10.1007/s10008-018-4025-9
[9]  Liu, X., Lin, P., Yan, X., et al. (2013) Enzyme-Coated Single ZnO Nanowire FET. Sensors and Actuators B: Chemical, 176, 22-27.
https://doi.org/10.1016/j.snb.2012.08.043
[10]  Fathollahzadeh, M., Hosseini, M., Norouzi, M., et al. (2018) Immobilization of Glucose Oxidase on ZnO Nanorods Decorated Electrolyte-Gated Field Effect Transistor for Glucose Detection. Journal of Solid State Electrochemistry, 22, 61-67.
https://doi.org/10.1007/s10008-017-3716-y
[11]  Anvarifard, M.K., Ramezani, Z. and Amiri, I.S. (2020) Label-Free Detection of DNA by a Dielectric Modulated Armchair-Graphene Nanoribbon FET Based Biosensor in a Dual-Nanogap Setup. Materials Science and Engineering: C, 117, Article ID: 111293.
https://doi.org/10.1016/j.msec.2020.111293
[12]  Pullano, S.A., Critello, C.D., Mahbub, I., Tasneem, N.T., Shamsir, S., Islam, S.K., Greco, M. and Fiorillo, A.S. (2018) EGFET-Based Sensors for Bioanalytical Applications: A Review. Sensors, 18, Article No. 4042.
https://doi.org/10.3390/s18114042
[13]  Kamahori, M., Ishige, Y. and Shimoda, M, (2008) Enzyme Immunoassay Using a Reusable Extended-Gate Field-Effect-Transistor Sensor with a Ferrocenylalkanethiol-Modified Gold Electrode. Analytical Sciences, 24, 1073-1079.
https://doi.org/10.2116/analsci.24.1073
[14]  Marquez, A.V., McEvoy, N. and Pakdel, A. (2020) Organic Electrochemical Transistors (OECTs) toward Flexible and Wearable Bioelectronics. Molecules, 25, Article No. 5288.
https://doi.org/10.3390/molecules25225288
[15]  Gasparyan, L., Mazo, I., Simonyanand, V. and Gasparyan, F. (2020) Noises and Signal-to-Noise Ratio of Nanosize EIS and ISFET Biosensors. Open Journal of Biophysics, 10, 1-12.
https://doi.org/10.4236/ojbiphy.2020.101001
https://www.scirp.org/journal/ojbiphy
[16]  Gasparyan, L., Gasparyan, F. and Simonyan, V. (2021) Internal Electrical Noises of BioFET Sensors Based on Various Architectures. Open Journal of Biophysics, 11, 177-204.
https://doi.org/10.4236/ojbiphy.2021.112006
[17]  Gasparyan, F.V., Poghossian, A., Vitusevich, S.A., Petrychuk, M.V., Sydoruk, V.A., Siqueira, J.R., Oliveira, O.N., Offenhäusser, A. and Schöning, M.J. (2011) Low-Frequency Noise in Field-Effect Devices Functionalized with Dendrimer/Carbon-Nanotube Multilayers. IEEE Sensors Journal, 11, 142-149.
https://doi.org/10.1109/JSEN.2010.2052355
[18]  Janicki, M., Daniel, M., Szermer, M. and Napieralski, A. (2004) Ion Sensitive Field Effect Transistor Modeling for Multidomain Simulation Purposes. Microelectronics Journal, 35, 831-840.
https://doi.org/10.1016/j.mejo.2004.06.015
[19]  Hassibi, A., Navid, R., Dutton, R.W. and Lee, T.H. (2004) Comprehensive Study of Noise Processes in Electrode Electrolyte Interfaces. Journal of Applied Physics, 96, 1074-1082.
https://doi.org/10.1063/1.1755429
[20]  Sze, S.M. and Ng, K.K. (2006) Physics of Semiconductor Devices. 3rd Edition, John Wiley & Sons, Hoboken.
https://doi.org/10.1002/0470068329
[21]  Ytterdal, T., Cheng, Y. and Fjeldly, T.A. (2003) Device Modeling for Analog and RF CMOS Circuit Design. John Wiley & Sons, Hoboken.
https://doi.org/10.1002/0470863803
[22]  Nakamura, M., Sato, N., Hoshi, N. and Sakata, O. (2011) Outer Helmholtz Plane of the Electrical Double Layer Formed at the Solid Electrode-Liquide Interface. ChemPhysChem, 12, 1430-1434.
https://doi.org/10.1002/cphc.201100011
[23]  Pud, S., Gasparyan, F., Petrychuk, M., Li, J., Offenhausser, A. and Vitusevich, S.A. (2014) Single Trap Dynamics in Electrolyte-Gated Si-Nanowire Field Effect Transistors. Journal of Applied Physics, 115, Article ID: 233705.
https://doi.org/10.1063/1.4883757
[24]  Park, C., Lee, C., Lee, K., Moon, B.-J., Byun, Y.H. and Shur, M. (1991) A Unified Current-Voltage Model for Long-Channel nMOSFETs. IEEE Transactions on Electron Devices, 38, 399-406.
https://doi.org/10.1109/16.69923
[25]  Gildenblat, G.S. and Huang, C.-L. (1989) Engineering Model Foe Inversion Channel Mobility for 60-300 K Temperature Range. Electronics Letters, 25, 634-636.
https://doi.org/10.1049/el:19890430
[26]  Cuffari, B. (2021) The Size of SARS-CoV-2 and Its Implications.
https://www.news-medical.net/health/The-Size-of-SARS-CoV-2-Compared-to-Other-Things.aspx
[27]  Abdulkarim, Y.I., Awl, H.N., Muhammadsharif, F.F., Sidiq, K.R., Saeed, S.R., Karaaslan, M., Huang, S., Luo, H. and Deng, L. (2009) Design and Study of a Coronavirus-Shaped Metamaterial Sensor Stimulated by Electromagnetic Waves for Rapid Diagnosis of Covid-19. arXiv:2009.08862.
[28]  Liu, H., Yang, A., Song, J., et al. (2021) Ultrafast, Sensitive, and Portable Detection of COVID-19 IgG Using Flexible Organic Electrochemical Transistors. Science Advances, 7, eabg8387.
https://doi.org/10.1126/sciadv.abg8387
[29]  Sheng, S. and Kong, F. (2012) Separation of Antigens and Antibodies by Immunoaffinity Chromatography. Pharmaceutical Biology, 50, 1038-1044.
https://doi.org/10.3109/13880209.2011.653493
[30]  Ayyar, B.V., Arora, S., Murphy, C. and O’Kennedy, R. (2012) Affinity Chromatography as a Tool for Antibody Purification. Methods, 56, 116-129.
https://doi.org/10.1016/j.ymeth.2011.10.007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133