In 1937, Paul Dirac proposed Large Number Hypothesis and Hypothesis of Variable Gravitational Constant, and later added notion of Continuous Creation of Matter in the World. Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing different mechanism of Matter creation. In this paper, we show that WUM is a natural continuation of Classical Physics. WUM is proposed as an alternative to prevailing Big Bang Model (BBM) that relies on General Relativity. WUM and BBM are principally different Models: 1) Instead of Initial Singularity with infinite energy density and extremely rapid expansion of spacetime (Inflation) in BBM; in WUM, there was Fluctuation (4D Nucleus of World with extrapolated radius equal to basic size unit of a) in Eternal Universe with finite extrapolated energy density (~104 less than nuclear density) and finite expansion of Nucleus in Its fourth spatial dimension with speed c that is gravitodynamic constant; 2) Instead of alleged practically Infinite Homogeneous and Isotropic Universe around Initial Singularity in BBM; in WUM, 3D Finite Boundless World (Hypersphere of 4D Nucleus) presents Patchwork Quilt of various Luminous Superclusters (≧103), which emerged in different places of World at different Cosmological times. Medium of World, consisting of protons, electrons, photons, neutrinos, and dark matter particles, is Homogeneous and Isotropic. Distribution of Macroobjects is spatially Inhomogeneous and Anisotropic and temporally Non-simultaneous. Most direct observational evidence of validity of WUM are: 1) Microwave Background Radiation and Intergalactic Plasma speak in favor of existence of Medium; 2) Laniakea Supercluster with binding mass ~1017M⊙ is home to Milky Way (MW) and ~105 other nearby galaxies, which did not start their movement from Initial Singularity; 3) MW is gravitationally bounded with Virgo Supercluster (VS) and has Orbital Angular Momentum that far exceeds its rotational angular momentum; 4) Mass-to-light ratio of VS is ~300 times larger than that of Solar ratio. Similar ratios are obtained for other superclusters. These ratios are main arguments in favor of presence of significant amounts of Dark Matter in the World. 5) Astronomers discovered the most distant galaxy HD1 that is ~13.5 Bly away. WUM predicts discovery of galaxies with a distance of ~13.8 Bly. Medium of World, Dark Matter, and Angular Momentum are main Three Pillars of WUM.
Netchitailo, V.S. (2013) Fundamental Parameter Q. Recommended Values of the Newtonian Parameter of Gravitation, Hubble’s Parameter, Age of the World, and Temperature of the Microwave Background Radiation. viXra:1312.0179v2. https://vixra.org/abs/1312.0179
[3]
Netchitailo, V.S. (2015) 5D World-Universe Model Space-Time-Energy. Journal of High Energy Physics, Gravitation and Cosmology, 1, 25-34. https://doi.org/10.4236/jhepgc.2015.11003
[4]
Netchitailo, V.S. (2015) 5D World-Universe Model. Multicomponent Dark Matter. Journal of High Energy Physics, Gravitation and Cosmology, 1, 55-71. https://doi.org/10.4236/jhepgc.2015.12006
[5]
Netchitailo, V.S. (2016) 5D World-Universe Model. Neutrinos. The World. Journal of High Energy Physics, Gravitation and Cosmology, 2, 1-18. https://doi.org/10.4236/jhepgc.2016.21001
[6]
Netchitailo, V.S. (2016) 5D World-Universe Model. Gravitation. Journal of High Energy Physics, Gravitation and Cosmology, 2, 328-343. https://doi.org/10.4236/jhepgc.2016.23031
[7]
Netchitailo, V.S. (2016) Overview of Hypersphere World-Universe Model. Journal of High Energy Physics, Gravitation and Cosmology, 2, 593-632. https://doi.org/10.4236/jhepgc.2016.24052
[8]
Netchitailo, V.S. (2017) Burst Astrophysics. Journal of High Energy Physics, Gravitation and Cosmology, 3, 157-166. https://doi.org/10.4236/jhepgc.2017.32016
[9]
Netchitailo, V.S. (2017) Mathematical Overview of Hypersphere World-Universe Model. Journal of High Energy Physics, Gravitation and Cosmology, 3, 415-437. https://doi.org/10.4236/jhepgc.2017.33033
[10]
Netchitailo, V.S. (2017) Astrophysics: Macroobject Shell Model. Journal of High Energy Physics, Gravitation and Cosmology, 3, 776-790. https://doi.org/10.4236/jhepgc.2017.34057
[11]
Netchitailo, V.S. (2018) Analysis of Maxwell’s Equations. Cosmic Magnetism. Journal of High Energy Physics, Gravitation and Cosmology, 4, 1-7. https://doi.org/10.4236/jhepgc.2018.41001
[12]
Netchitailo, V.S. (2018) Hypersphere World-Universe Model. Tribute to Classical Physics. Journal of High Energy Physics, Gravitation and Cosmology, 4, 441-470. https://doi.org/10.4236/jhepgc.2018.43024
[13]
Netchitailo, V.S. (2019) Solar System. Angular Momentum. New Physics. Journal of High Energy Physics, Gravitation and Cosmology, 5, 112-139. https://doi.org/10.4236/jhepgc.2019.51005
[14]
Netchitailo, V.S. (2019) High-Energy Atmospheric Physics: Ball Lightning. Journal of High Energy Physics, Gravitation and Cosmology, 5, 360-374. https://doi.org/10.4236/jhepgc.2019.52020
[15]
Netchitailo, V.S. (2019) Dark Matter Cosmology and Astrophysics. Journal of High Energy Physics, Gravitation and Cosmology, 5, 999-1050. https://doi.org/10.4236/jhepgc.2019.54056
[16]
Netchitailo, V.S. (2020) World-Universe Model—Alternative to Big Bang Model. Journal of High Energy Physics, Gravitation and Cosmology, 6, 133-258. https://doi.org/10.4236/jhepgc.2020.61012
[17]
Netchitailo, V.S. (2020) World-Universe Model Predictions. Journal of High Energy Physics, Gravitation and Cosmology, 6, 282-297. https://doi.org/10.4236/jhepgc.2020.62022
[18]
Netchitailo, V.S. (2020) Hypersphere World-Universe Model: Basic Ideas. Journal of High Energy Physics, Gravitation and Cosmology, 6, 710-752. https://doi.org/10.4236/jhepgc.2020.64049
[19]
Netchitailo, V.S. (2021) Hypersphere World-Universe Model: Evolution of the World. Journal of High Energy Physics, Gravitation and Cosmology, 7, 508-530. https://doi.org/10.4236/jhepgc.2021.72029
[20]
Netchitailo, V.S. (2021) Hypersphere World-Universe Model. Journal of High Energy Physics, Gravitation and Cosmology, 7, 915-941. https://doi.org/10.4236/jhepgc.2021.72042
[21]
Netchitailo, V.S. (2021) Solar System. Angular Momentum. Dark Matter Reactors. Journal of High Energy Physics, Gravitation and Cosmology, 7, 1353-1372. https://doi.org/10.4236/jhepgc.2021.74084
[22]
Netchitailo, V.S. (2021) From the Beginning of the World to the Beginning of Life on Earth. Journal of High Energy Physics, Gravitation and Cosmology, 7, 1503-1523. https://doi.org/10.4236/jhepgc.2021.74092
[23]
Netchitailo, V.S. (2022) Hypersphere World-Universe Model: Centre of Our Galaxy. Journal of High Energy Physics, Gravitation and Cosmology, 8, 25-55. https://doi.org/10.4236/jhepgc.2022.81003
[24]
Netchitailo, V.S. (2022) Decisive Role of Dark Matter in Cosmology. Journal of High Energy Physics, Gravitation and Cosmology, 8, 115-142. https://doi.org/10.4236/jhepgc.2022.81009
[25]
Netchitailo, V.S. (2022) Unidentified Infrared Discrete Emission Bands. Journal of High Energy Physics, Gravitation and Cosmology, 8, 243-253. https://doi.org/10.4236/jhepgc.2022.82018
[26]
Netchitailo, V.S. (2022) Hubble Tension. Journal of High Energy Physics, Gravitation and Cosmology, 8, 392-401. https://doi.org/10.4236/jhepgc.2022.82030
[27]
Netchitailo, V.S. (2022) Center of Milky Way Galaxy. Journal of High Energy Physics, Gravitation and Cosmology, 8, 657-676. https://doi.org/10.4236/jhepgc.2022.83048
[28]
Ludwig, G.O. (2021) Galactic Rotation Curve and Dark Matter According to Gravitomagnetism. The European Physical Journal C, 81, Article No: 186. https://doi.org/10.1140/epjc/s10052-021-08967-3