|
Pure Mathematics 2022
中学基本初等函数导数的高观点证明
|
Abstract:
初等数学作为高等数学层面上的特例,往往不一定对所有数学概念、命题和数学系统满足逻辑和结果的无矛盾性。本文以高等数学范畴的两个重要极限给出对指数函数、对数函数、正弦函数和余弦函数的导数的证明,提高和拓宽学生的思维视角和逻辑起点,并利用高观点的数学思想方法来审视中学教学。
As a special case of higher mathematics, elementary mathematics often does not necessarily satisfy the contradiction-free logic and results for all mathematical concepts, propositions and mathemati-cal systems. This paper gives the proof of the derivative of exponential function, logarithmic func-tion, sine function and cosine function with two important limits of the category of higher mathe-matics, so as to improve and broaden the students’ thinking perspective and logical starting point, and use the mathematical thinking method of high point of view to examine middle school teaching.
[1] | 陈建华. 高观点下初等数学研究途径再探[J]. 阴山学刊(自然科学版), 2016, 30(4): 5-9. |
[2] | 菲利克斯?克莱因. 高观点下的初等数学[M]. 舒湘芹, 等, 译. 上海: 复旦大学出版社, 2008. |
[3] | 马吴艳. “高观点”下的数学深度学习[J]. 数学教学通讯, 2019(1): 63-64. |
[4] | 李士锜, 吴颖康. 数学教学心理学[M]. 上海: 华东师范大学出版社, 2011. |
[5] | 史宁忠, 王尚志. 普通高中数学课程标准(2017年版2020年修订)解读[M]. 北京: 高等教育出版社, 2020. |