The present study enhances the knowledge on the diversity, abundance and depth distribution of larger benthic foraminifera (LBF) from six different islands in Mahatma Gandhi Marine National Park (MGMNP), where meagre anthropogenic impact existed. Very few works have been reported on the Larger Benthic Foraminifera (LBF) on this Island environment, as this region also falls under Marine Protected Area (MPA). Development of database on this study has?a validity for pristine nature of LBF environment. Modern LBF hotspot diversity is often overlooked and no data are available to date on tropical regions. Out of 105 MPA’s existed in this Island, MGMNP encompasses about 15 islands, out of which six islands were considered for the study. These six islands are Snob Island, Grub Island, Boat Island, Hobday Island, Belle Island and Jolly Buoy Island. The study revealed presence of 22 taxa of modern LBF and the most common families are the Amphisteginidae, Calcarinidae, Nummulitidae, Peneroplidae and Soritidae. The purpose of this study was to document the distribution of LBF species prevailing in this area, as well as develop the baseline environmental information of its existences to facilitate further continuous monitoring the changes occurring in this island environment. The environment suggested that the presence of major LBF species studied are?Calcarina calcarinoides,?Calcarina defrancei,?Calcarina hispida,?Calcarina spengleri,?Neorotalia calcar?and?Neorotalia gaimardi?exhibited the availability of good coral cover with commendable macro algal coverage or sparsely sea grasses, as they prefer such substratum for their epiphytic association.
References
[1]
Balakrishnan, M., Srivastava, R.C. and Pokhriyal, M. (2008) Biodiversity of Andaman and Nicobar Islands. Biobytes, 3, 9-12.
[2]
Hughes, T.P., Kerry, J.T., álvarez-Noriega, M., álvarez-Romero, J.G., Anderson, K.D., Baird, A.H., et al. (2017) Global Warming and Recurrent Mass Bleaching of Corals. Nature, 543, 373-377. https://doi.org/10.1038/nature21707
[3]
Rottger, R. (1976) Ecological Observations of Heterostegina Depressa (Foraminifera, Nummulitidae). The Laboratory and in Its Natural Habitat: International Symposium of Benthic Foraminifera of Continental Margins, Vol. 1, Mar Sed Spec Publ, Springer Tokyo, 75-79.
[4]
Lee, J.J. and Anderson, O.R. (1991) Symbiosis in Foraminifera. In: Biology of Foraminifera, Vol. 1, Academic Press, London, 157-220.
[5]
Prazeres, M., Uthicke, S. and Pandolfi, J.M. (2016) Influence of Local Habitat on the Physiological Responses of Large Benthic Foraminifera to Temperature and Nutrient Stress. Scientific Reports, 6, Article No. 21936.
https://doi.org/10.1038/srep21936
[6]
Renema, W. (2006) Habitat Variables Determining the Occurrence of Large Benthic Foraminifera in the Berau Area (East Kalimantan, Indonesia). Coral Reefs, 25, 351-359. https://doi.org/10.1007/s00338-006-0119-4
[7]
Renema, W. (2008) Habitat Selective Factors Influencing the Distribution of Larger Benthic Foraminiferal Assemblages over the Kepulauan Seribu. Marine Micropaleontology, 68, 286-298. https://doi.org/10.1016/j.marmicro.2008.06.002
[8]
Intergovernmental Panel on Climate Change (2014) International Procedings on Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781107415324
[9]
Vogel, N. and Uthicke, S. (2012) Calcification and Photobiology in Symbiont-Bearing Benthic Foraminifera and Responses to a High CO2 Environment. Journal of Experimental Marine Biology and Ecology, 424-425, 15-24.
https://doi.org/10.1016/j.jembe.2012.05.008
[10]
Fujita, K., Hikami, M., Suzuki, A., Kuroyanagi, A. and Kawahata, H. (2011) Effects of Ocean Acidification on Calcification of Symbiont-Bearing Reef Foraminifera. Biogeosciences Discussions, 8, 1809-1829. https://doi.org/10.5194/bgd-8-1809-2011
[11]
Doo, S.S., Fujita, K., Byrne, M. and Uthicke, S. (2014) Fate of Calcifying Tropical Symbiont-Bearing Larger Benthic Foraminifera: Living Sands in a Changing Ocean. The Biological Bulletin, 226, 169-186. https://doi.org/10.1086/BBLv226n3p169
[12]
Talge, H.K. and Hallock, P. (2003) Ultrastructural Responses in Field-Bleached and Experimentally Stressed Amphistegina gibbosa (Class Foraminifera). Journal of Eukaryotic Microbiology, 50, 324-333.
https://doi.org/10.1111/j.1550-7408.2003.tb00143.x
[13]
Schmidt, C., Heinz, P., Kucera, M. and Uthicke, S. (2011) Temperature-Induced Stress Leads to Bleaching in Larger Benthic Foraminifera Hosting Endosymbiotic Diatoms. Limnology and Oceanography, 56, 1587-1602.
https://doi.org/10.4319/lo.2011.56.5.1587
[14]
Hallock, P., Lidz, B.H., Cockey-Burkhard, E.M. and Donnelly, K.B. (2003) Foraminifera as Bioindicators in Coral Reef Assessment and Monitoring: The FORAM Index. In: Melzian, B.D., Engle, V., McAlister, M., Sandhu, S. and Eads, L.K., Eds., Coastal Monitoring through Partnerships, Springer, Dordrecht, 221-238.
https://doi.org/10.1007/978-94-017-0299-7_20
[15]
Reiss, Z. and Hottinger, L. (1984) The Gulf of Aqaba: Ecological Micropaleontology. Ecological Studies, Vol. 50, Springer, Berlin, Heidelberg, 1-354.
https://doi.org/10.1007/978-3-642-69787-6_1
[16]
Hohenegger, J. (1994) Distribution of Living Larger Foraminifera NW of Sesoko-Jima, Okinawa, Japan. Marine Ecology, 15, 291-334.
https://doi.org/10.1111/j.1439-0485.1994.tb00059.x
[17]
Renema, W. (2010) Is Increased Calcarinid (Foraminifera) Abundance Indicating a Larger Role for Macro-Algae in Indonesian Plio-Pleistocene Coral Reefs? Coral Reefs, 29, 165-173. https://doi.org/10.1007/s00338-009-0568-7
[18]
Hallock, P. (2012) The FoRAM Index Revisited: Uses, Challenges, and Limitations. Proceedings of the 12th International Coral Reef Symposium, Cairns, 9-13 July 2012, Article No. 1218.
[19]
Hottinger, L. (1983) Processes Determining the Distribution of Larger Foraminifera in Space and Time. Utrecht Micropaleontological Bulletins, 30, 239-253.
[20]
Hallock, P. (1981) Production of Carbonate Sediments by Selected Large Benthic Foraminifera on Two Pacific Coral Reefs. Journal of Sedimentary Petrology, 51, 467-474. https://doi.org/10.1306/212F7CB1-2B24-11D7-8648000102C1865D
[21]
Hallock, P. (1981) Algal Symbiosis: A Mathematical Analysis. Marine Biology, 62, 249-255. https://doi.org/10.1007/BF00397691
[22]
Hallock, P. (1981) Light Dependence in Amphistegina. Journal Foraminiferal Research, 11, 40-46. https://doi.org/10.2113/gsjfr.11.1.40
[23]
Hallock, P. (1985) Why Are Larger Foraminifera Large? Paleobiology, 11, 195-208.
https://doi.org/10.1017/S0094837300011507
[24]
Hallock, P. (1999) Symbiont-Bearing Foraminifera. In: Sen Gupta, B., Ed., Modern Foraminifera, Springer, Dordrecht, 123-139.
https://doi.org/10.1007/0-306-48104-9_8
[25]
Cockey, E., Hallock, P. and Lidz, B.H. (1996) Decadal-Scale Changes in Benthic Foraminiferal Assemblages off Key Largo, Florida. Coral Reefs, 15, 237-248.
https://doi.org/10.1007/BF01787458
[26]
Schueth, J.D. and Frank, T.D. (2008) Reef Foraminifera as Bioindicators of Coral Reef Health: Low Isles Reef, Northern Great Barrier Reef, Australia. Journal of Foraminiferal Research, 38, 11-22. https://doi.org/10.2113/gsjfr.38.1.11
[27]
Loeblich Jr., A.R. and Tappan, H. (1987) Foraminiferal Genera and Their Classification. Springer, New York, 2. https://doi.org/10.1007/978-1-4899-5760-3
[28]
Milker, Y. and Schmiedl, G. (2012) A Taxonomic Guide to Modern Benthic Shelf Foraminifera of the Western Mediterranean Sea. Palaeontologia Electronica, 15, Article No. 16A. https://doi.org/10.26879/271
[29]
Severin, K.P. and Lipps, J.H. (2007) The Weight-Volume Relationship of the Test of Alveolinella quoyi: Implications for the Taphonomy of Large Fusiform Foraminifera. Lethaia, 22, 1-12. https://doi.org/10.1111/j.1502-3931.1989.tb01163.x
[30]
Renema, W. (2018) Terrestrial Influence as a Key Driver of Spatial Variability in Large Benthic Foraminiferal Assemblage Composition in the Central Indo-Pacific. Earth-Science Reviews, 177, 514-544. https://doi.org/10.1016/j.earscirev.2017.12.013
[31]
Lee, J.J. (1994) Diatoms, or Their Chloroplasts, as Endosymbiotic Partners for Foraminifera: Proceedings of the 11th International Diatom Symposium. Memoirs of the California Academy of Science, 17, 21-36.
[32]
Lee, J.J., Mcenery, M.E., Ter Kuile, B., Erez, J., Rottger, R., Rockwell, R.F., Faber Jr., W.W. and Lagziel, A. (1989) Identification and Distribution of Endosymbiotic Diatoms in Larger Foraminifera. Micropaleontology, 35, 353-366.
https://doi.org/10.2307/1485677
[33]
Saraswati, P.K. (2007) Symbiont Bearing Benthic Foraminifera of Lakshadweep. Indian Journal of Marine Sciences, 36, 351-354.
[34]
Prazeres, M. and Renema, W. (2019) Evolutionary Significance of the Microbial Assemblages of Large Benthic Foraminifera. Biological Review, 94, 828-848.
https://doi.org/10.1111/brv.12482
[35]
Prazeres, M., Roberts, T.E., Ramadhani, S.F., Doo, S.S., Schmidt, C., Stuhr, M. and Renema, W. (2021) Diversity and Flexibility of Algal Symbiont Community in Globally Distributed Larger Benthic Foraminifera of the Genus Amphistegina. BMC Microbiology, 21, Article No. 243. https://doi.org/10.1186/s12866-021-02299-8
Langer, M.R. and Hottinger, L. (2000) Biogeography of Selected Larger Foraminifera. Micropaleontology, 46, 105-126.
[38]
Lee, J.J., Lanners, E. and TerKuile, B. (1988) The Retention of Chloroplasts by the Foraminifer Elphidium Crispum. Symbiosis, 5, 45-59.
[39]
Pawlowski, J. (2000) Introduction to the Molecular Systematics of Foraminifera. Micropalaentology, 46, 1-12.
[40]
Pawlowski, J., Holzmann, M., Fahrni, J.F. and Hallock, P. (2001) Molecular Identification of Algal Endosymbionts in Large Miliolid Foraminifera: 1. Chlorophytes. Journal of Eukaryotic Microbiology, 48, 362-367.
https://doi.org/10.1111/j.1550-7408.2001.tb00325.x
[41]
Pawlowski, J., Holzmann, M., Fahrni, J.F., Pochon, X. and Lee, J.J. (2001) Molecular Identification of Algal Endosymbionts in Large Miliolid Foraminifera: 2. Dinoflagellates. Journal of Eukaryotic Microbiology, 48, 368-373.
https://doi.org/10.1111/j.1550-7408.2001.tb00326.x
[42]
Renema, W. (2006) Large Benthic Foraminifera from the Deep Photic Zone of a Mixed Siliciclastic-Carbonate Shelf off East Kalimantan, Indonesia. Marine Micropaleontology, 58, 73-82. https://doi.org/10.1016/j.marmicro.2005.10.004
[43]
Renema, W., Beaman, R.J. and Webster, J.M. (2013) Mixing of Relict and Modern Tests of Larger Benthic Foraminifera on the Great Barrier Reef Shelf Margin. Marine Micropaleontology, 101, 68-75. https://doi.org/10.1016/j.marmicro.2013.03.002
[44]
Hohenegger, J. (2004) Depth Coenoclines and Environmental Considerations of Western Pacific Larger Foraminifera. Journal of Foraminiferal Research, 34, 9-33.
https://doi.org/10.2113/0340009
[45]
Renema, W. and Troelestra, S.R. (2001) Larger Foraminifera Distribution on a Mesotrophic Carbonate Shelf in South West Sulawesi Indonesia. Paleogeography Paleoclimatology Paleocology, 175, 125-146.
https://doi.org/10.1016/S0031-0182(01)00389-3
[46]
Kuile, B.H. and Erez, J. (1991) Carbon Budgets for Two Species of Benthonic Symbiont-Bearing Foraminifera. The Biological Bulletin, 180, 489-495.
https://doi.org/10.2307/1542350
[47]
Prazeres, M., Roberts, T.E. and Pandolfi, J.M. (2016) Shifts in Species Abundance of Large Benthic Foraminifera Amphistegina: The Possible Effects of Tropical Cyclone Ita. Coral Reefs, 36, 305-309. https://doi.org/10.1007/s00338-016-1497-x
[48]
Hohenegger, J., Yordanova, E., Nakano, Y. and Tatzreiter, F. (1999) Habitats of Larger Foraminifera on the Upper Reef Slope of Sesoko Island, Okinawa, Japan. Marine Micropaleontology, 36, 109-168.
https://doi.org/10.1016/S0377-8398(98)00030-9
[49]
Li, Q. and Wang, P. (1985) Distribution of Larger Foraminifera in the Northwestern Part of the South China Sea. In: Wang, P., Ed., Marine Micropaleontology of China, China Ocean Press, Beijing, 176-195.
[50]
Sugihara, K., Masunaga, N. and Fujita, K. (2006) Latitudinal Changes in Larger Benthic Foraminiferal Assemblages in Shallow-Water Reef Sediments along the Ryukyu Islands, Japan. Island Arc, 15, 437-454.
https://doi.org/10.1111/j.1440-1738.2006.00540.x
[51]
Renema, W. (2002) Larger Foraminifera as Marine Environmental Indicators. Scripta Geologica, 124, 1-230.
[52]
Hallock, P. (1984) Distribution of Selected Species of Living Algal Symbiont-Bearing Foraminifera on Two Pacific Coral Reefs. Journal of Foraminiferal Research, 14, 250-261. https://doi.org/10.2113/gsjfr.14.4.250
[53]
Hohenegger, J., Yordanova, E. and Hatta, A. (2000) Remarks on West Pacific Nummulitidae (Foraminifera). Journal of Foraminiferal Research, 30, 3-28.
https://doi.org/10.2113/0300003
[54]
Beavington-Penney, S. and Racey, A. (2004) Ecology of Extant Nummulitids and Other Larger Benthic Foraminifera: Applications in Palaeoenvironmental Analysis. Earth-Science Reviews, 67, 219-265. https://doi.org/10.1016/j.earscirev.2004.02.005
[55]
Pecheux, M.J.F. (1995) Ecomorphology of a Recent Large Foraminifer, Operculina ammonoides. Geobios, 28, 529-566. https://doi.org/10.1016/S0016-6995(95)80209-6
[56]
Hohenegger, J. (2006) The Importance of Symbiont-Bearing Benthic Foraminifera for West Pacific Carbonate Beach Environments. Marine Micropaleontology, 61, 4-39. https://doi.org/10.1016/j.marmicro.2006.05.007
[57]
Yokes, M.B., Meric, E. and Avsar, N. (2007) On the Presence of Alien Foraminifera Amphistegina lobifera Larsen on the Coasts of Maltese Islands. Aquatic Invasions, 2, 439-441. https://doi.org/10.3391/ai.2007.2.4.15
[58]
Yuvaraja, M.P. and Ramanujam, N. (2013) Abnormal Growth of Benthic Foramnifera of Inter Generic Individuals and Microboring Indicating Environmental Stress in Port Blair, India. International Journal of Current Research, 5, 332-335.
Prazeres, M., Roberts, T.E., Pandolfi, J.M., Schmaljohann, R. and Hoegh-Guldberg, O. (2017) Variation in Sensitivity of Large Benthic Foraminifera to the Combined Effects of Ocean Warming and Local Impacts. Scientific Report, 7, Article No. 45227. https://doi.org/10.1038/srep45227
[61]
Oron, S., Evans, D., Abramovich, S., Almogi-Labin, A. and Erez, J. (2020) Differential Sensitivity of a Symbiont-Bearing Foraminifer to Seawater Carbonate Chemistry in a Decoupled DIC-PH Experiment. JGR Biogeoscience, 125, e2020JG005726.
https://doi.org/10.1029/2020JG005726
[62]
Richardson, S.L. (2001) Endosymbiont Change as a Key Innovation in the Adaptive Radiation of Soritida (Foraminifera). Paleobiology, 27, 262-289.
https://doi.org/10.1666/0094-8373(2001)027<0262:ECAAKI>2.0.CO;2
[63]
Lopez, E. (1979) Algal Chloroplasts in the Protoplasm of Three Species of Benthic Foraminifera: Taxonomic Affinity, Viability and Persistence. Marine Biology, 53, 201-211. https://doi.org/10.1007/BF00952427
[64]
Lee, J.J., McEnery, M.E. and Garrison, J.R. (1980) Experimental Studies of Larger Foraminifera and Their Symbionts from the Gulf of Elat on the Red Sea. Journal of Foraminiferal Research, 10, 31-47. https://doi.org/10.2113/gsjfr.10.1.31
[65]
Lee, J.J., Soldo, A.T., Reisser, W., Lee, M.J., Jeon, K.W. and Gortz, H.D. (1985) The Extent of Algal and Bacterial Endosymbioses in Protozoa. Journal of Protozoology, 32, 391-403. https://doi.org/10.1111/j.1550-7408.1985.tb04034.x
[66]
Lee, J.J., Burnham, B. and Cevasco, M.E. (2004) A New Modern Soritid Foraminifer, Amphisorus saurensis n. sp., from the Lizard Island Group (Great Barrier Reef, Australia). Micropaleontology, 50, 357-368. https://doi.org/10.2113/50.4.357
[67]
Pochon, X., Pawlowski, J., Zaninetti, L. and Rowan, R. (2001) High Genetic Diversity and Relative Specificity among Symbiodinium-Like Endosymbioticdinoflagellates in Soritid Foraminiferans. Marine Biology, 139, 1069-1078.
https://doi.org/10.1007/s002270100674
[68]
Hottinger, L. (1977) Distribution of Larger Peneroplidae, Borelis and Nummulitidae in the Gulf of Elat, Red Sea. Utrecht Micropaleontological Bulletins, 15, 35-109.
[69]
Narayan, Y.R., Lybolt, M., Zhao, J.-X., Feng, Y. and Pandolfi, J.M. (2015) Holocene Benthicforaminferal Assemblages Indicate Long-Term Marginality of Reef Habitats FromMoreton Bay, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 420, 49-64. https://doi.org/10.1016/j.palaeo.2014.12.010
[70]
Reymond, C.E., Roff, G., Chivas, A.R., Zhao, J.X. and Pandolfi, J.M. (2013) Millennium-Scale Records of Benthic Foraminiferal Communities from the Central Great Barrier Reef Reveal Spatial Differences and Temporal Consistency. Palaeogeography, Palaeoclimatology, Palaeoecology, 374, 52-61.
https://doi.org/10.1016/j.palaeo.2013.01.001
[71]
Gudmundsson, G. (1994) Phylogeny, Ontogeny and Systematics of Recent Soritacea Ehrenberg 1839 (Foraminiferida). Micropaleontology, 40, 101-155.
https://doi.org/10.2307/1485772
[72]
Bourne, D.G., Dennis, P.G., Uthicke, S., Soo, R.M., Tyson, G.W. and Webster, N. (2013) Coral Reef Invertebrate Microbiomes Correlate with the Presence of Photosymbionts. The ISME Journal, 7, 1452-1458. https://doi.org/10.1038/ismej.2012.172
[73]
Garcia-Cuetos, L., Pochon, X. and Pawlowski, J. (2005) Molecular Evidence for Host-Symbiont Specificity in Soritid Foraminifera. Protist, 156, 399-412.
https://doi.org/10.1016/j.protis.2005.08.003
[74]
Lee, J.J. (1990) Phylum Granuloreticulosa (Foraminifera). In: Margulis, L., Corliss, J.O., Melkonian, M. and Chapman, D.J. Eds., Handbook of Protoctista, Jones and Bartlett Publishers, Boston, 524-548.
[75]
Hawkins, E.K. and Lee, J.J. (2001) Architecture of the Golgi Apparatus of a Scale-Forming Alga: Biogenesis and Transport of Scales. Protoplasma, 216, Article No. 227. https://doi.org/10.1007/BF02673874
[76]
Lee, J.J. Morales, J. Bacus, S. Diamont, A. Hallock, P. Pawlowski, J. and Thorpe, J. (1997) Progress in Characterizing the Endosymbiotic Dinoflagellates of Soritid Foraminifera and Related Studies on Some Stages in the Life Cycle of Marginopora Vertebralis. Journal of Foraminiferal Research, 27, 254-263.
https://doi.org/10.2113/gsjfr.27.4.254
[77]
Leutenegger, S. (1984) Symbiosis in Benthic Foraminifera: Specificity and Host Adaptations. Journal of Foraminiferal Research, 14, 16-35.
https://doi.org/10.2113/gsjfr.14.1.16
[78]
Renema, W. (2003) Larger Foraminifera on Reefs around Bali (Indonesia). Zoologische Verhandelingen Leiden, 345, 337-366.
[79]
Ranju, R., Menon, N.N. and Menon, N.R. (2019) Observations on Some Symbiont Bearing Foraminifera from the Shelf and Slope Sediments of Eastern Arabian Sea. Journal of the Marine Biological Association of India, 60, 53-58.
https://doi.org/10.6024/jmbai.2018.60.2.2054-08
[80]
Pochon, X., LaJeunesse, T.C. and Pawlowski, J. (2004) Biogeographic Partitioning and Host Specialization among Foraminiferan Dinoflagellate Symbionts (Symbiodinium; Dinophyta). Marine Biology, 146, 17-27.
https://doi.org/10.1007/s00227-004-1427-2