With the advent of new materials, microchip industry is investigating new architecture to further scale down the device size. New technologies are on the way to achieving this goal without compromising with the device’s performance and benefits. In this new scenario, corona charge deposition technique (CCDT) has become an indispensable part of the thin film industry. Due to the non-invasive and non-destructive nature of corona charge ions, they are effectively being used to improve the device properties. They are also useful to understand the electrical properties of insulators and other materials. Corona-Kelvin non-contact metrology or the C-KM is the most recent development in this field. In this review, the applications of corona charge deposition technique in the semiconductor industry have been reviewed. Further, the methodology involved is described. The advances as well as challenges and improvements including the future research are also discussed.
References
[1]
Thompson, S. (2015) Advanced CMOS Device Physics for 7nm and Beyond. IEDM2015 Device Tutorial.
[2]
Dai, D., Bauters, J. and Bowers, J.E. (2012) Passive Technologies for Future Large-Scale Photonic Integrated Circuits on Silicon: Polarization Handling, Light Non-Reciprocity and Loss Reduction. Light: Science & Applications, 1, e1.
https://doi.org/10.1038/lsa.2012.1
[3]
Su, Y.-H., Ke, Y.-F., Cai, S.-L. and Yao, Q.-Y. (2012) Surface Plasmon Resonance of Layer-by-Layer Gold Nanoparticles Induced Photoelectric Current in Environmentally Friendly Plasmon-Sensitized Solar Cell. Light: Science & Applications, 1, e14.
https://doi.org/10.1038/lsa.2012.14
[4]
Cheng, L. and Liu, Y. (2018) What Limits the Intrinsic Mobility of Electrons and Holes in Two-Dimensional Metal Dichalcogenides? Journal of the American Chemical Society, 140, 17895-17900. https://doi.org/10.1021/jacs.8b07871
[5]
Jang, H.-S., Lim, J.-Y., Kang, S.-G., Seo, Y.-M., Moon, J.-Y., Lee, J.-H. and Whang, D. (2020) Toward Scalable Growth for Single-Crystal Graphene on Polycrystalline Metal Foil. ACS Nano, 14, 3141-3149. https://doi.org/10.1021/acsnano.9b08305
[6]
Dong, X., Zhao, J. and Xie, Y. (2010) Fabrication Cost Analysis and Cost-Aware Design Space Exploration for 3-D ICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29, 1959-1972.
https://doi.org/10.1109/TCAD.2010.2062811
[7]
Kinam, K. (2015) 1.1 Silicon Technologies and Solutions for the Data-Driven World. 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers, San Francisco, 22-26 February 2015, 1-7.
[8]
Tao, L. (2020) Chiplet Heterogeneous Integration Technology—Status and Challenges. Electronics, 9, Article No. 670. https://doi.org/10.3390/electronics9040670
[9]
Schmitz, J. (2018) Low Temperature Thin Films for Next-Generation Microelectronics (Invited). Surface and Coatings Technology, 343, 83-88.
https://doi.org/10.1016/j.surfcoat.2017.11.013
[10]
Bhunia, S. and Tehranipoor, M. (2019) Hardware Security: A Hands-On Learning Approach. Morgan Kaufmann Publishers, Burlington, 23-45.
[11]
Labrot, M., Cheynis, F., Barge, D., Maury, P., Juhel, M., Lagrasta, S. and Muller, P. (2017) Improvement of Etching and Cleaning Methods for Integration of Raised Source and Drain in FD-SOI Technologies. Microelectronic Engineering, 180, 56-64.
https://doi.org/10.1016/j.mee.2017.04.009
Bonilla, R.S., Jennison, N., Clayton-Warwick, D., Collett, K.A., Rands, L. and Wilshaw, P.R. (2016) Corona Charge in SiO2: Kinetics and Surface Passivation for High Efficiency Silicon Solar Cells. Energy Procedia, 92, 326-335.
https://doi.org/10.1016/j.egypro.2016.07.090
[14]
Ruirui, C. and Wang, F.F. (2021) SiC and GaN Devices with Cryogenic Cooling. IEEE Open Journal of Power Electronics, 2, 315-326.
https://doi.org/10.1109/OJPEL.2021.3075061
[15]
Asubar, J.T., Yatabe, Z., Gregusova, D. and Hashizume, T. (2021) Controlling Surface/Interface States in GaN-Based Transistors: Surface Model, Insulated Gate, and Surface Passivation. Journal of Applied Physics, 129, Article No.121102.
https://doi.org/10.1063/5.0039564
[16]
Zhang, H., Min, J.W., Gnanasekar, P., Ng, T.K. and Ooi, B.S. (2021) InGaN-Based Nanowires Development for Energy Harvesting and Conversion Applications. Journal of Applied Physics, 129, Article No. 121103. https://doi.org/10.1063/5.0035685
[17]
Kho, T.C., Baker-Finch, C. and Mclntosh, R.K. (2011) The Study of Thermal Silicon Dioxide Electrets Formed by Corona Discharge and Rapid-Thermal Annealing. Journal of Applied Physics, 109, Article No. 053108. https://doi.org/10.1063/1.3559260
[18]
Abadias, G., Chason, E., Keckes, J., Sebastiani, M., Thompson, B.G., Barthel, E., Murray, E.C., Stoessel, C. and Martinu, L. (2018) Review Article: Stress in Thin Films and Coatings: Current Status, Challenges, and Prospects. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 36, Article No. 020801.
https://doi.org/10.1116/1.5011790
[19]
Belyaev, A., Marinskiy, D., Wilson, M., D’Amico, J., Jastrzeski, L. and Lagowski, J. (2007) Application of Non-Contact Corona-Kelvin Metrology for Characterization of Plasma Nitrided SiO2. AIP Conference Proceedings, 931, 270-274.
https://doi.org/10.1063/1.2799382
[20]
Marinskiy, D., Lagowski, J., Wilson, M., Jastrzebski, L., Santiesteban, R. and Elshot, K. (2000) Small Signal AC-Surface Photovoltage Technique for Non-Contact Monitoring of Near Surface Doping for IC Processing. Proceedings of SPIE—The International Society for Optical Engineering, 4182, 72-77.
https://doi.org/10.1117/12.410062
[21]
Wilson, M., Lagowski, J., Jastrzebski, L., Savtchouk, A. and Faifer, V. (2001) COCOS (Corona Oxide Characterization of Semiconductor) Non-Contact Metrology for Gate Dielectrics. AIP Conference Proceedings, 550, 220-225.
https://doi.org/10.1063/1.1354401
[22]
Edelman, P., Savchouk, A., Marsall, W., D’Amico, J., Kochey, N.J., Marinskiy, D., and Lagowski, J. (2003) Non-Contact C-V Technique for High-K Applications. AIP Conference Proceedings, 683, 160-165. https://doi.org/10.1063/1.1622464
[23]
Sigmond, R.S. (1982) Simple Approximate Treatment of Unipolar Space-Charge-Dominated Coronas: The Warburg Law and the Saturation Current. Journal of Applied Physics, 53, 891-898. https://doi.org/10.1063/1.330557
[24]
Comizzoli, R.B. (1987) Uses of Corona Discharges in the Semiconductor Industry. Journal of the Electrochemical Society, 34, 424-429.
https://doi.org/10.1149/1.2100472
[25]
Williams, R. and Woods, M.H. (1973) High Electric Fields in Silicon Dioxide Produced by Corona Charging. Journal of Applied Physics, 44, 1026-1028.
https://doi.org/10.1063/1.1662300
[26]
Landsberger, L.M. and Tiller, W.A. (1988) Structural Relaxation Effects in Dry Thermal Silicon Dioxide Films on Silicon. In: Robert Helms, C. and Deal, B.E., Eds., The Physics and Chemistry of SiO2 and the Si-SiO2 Interface, Springer, New York.
https://doi.org/10.1007/978-1-4899-0774-5_17
[27]
Edelman, P., Savchouk, A. and Lagowski, J. (1997) Mapping of Leakage and Breakdown of Dielectric Films on Silicon. In: Doneker, J., Ed., Defect Recognition and Image Processing in Semiconductors, Routledge, New York, 141-144.
https://doi.org/10.1201/9781315140810-28
https://www.taylorfrancis.com/chapters/edit/10.1201/9781315140810-28
[28]
Aplin, K.L. and Harrison, R.G. (2013) Lord Kelvin’s Atmospheric Electricity Measurements. History of Geo- and Space Sciences, 4, 83-95.
https://doi.org/10.5194/hgss-4-83-2013
[29]
Comizzoli, R.B. (1991) Failure Analysis of Junction Field Effect Transistor Integrated Circuits by Corona Charging. Journal of the Electrochemical Society, 138, 1098-1100. https://doi.org/10.1149/1.2085722
[30]
Madani, M.R. and Ajmera, P.K. (1988) Low Temperature Oxidation of Silicon. Electronics Letters, 24, 856-857. https://doi.org/10.1049/el:19880582
[31]
Madani, M.R. and Ajmera, P.K. (1993) Characterization of Silicon Oxide Films Grown at Room Temperature by Point-to-Plane Corona Discharge. Journal of Electronic Materials, 22, 1147-1152. https://doi.org/10.1007/BF02817687
[32]
Prasad, I. and Chandorkar, A.N. (2003) Spectroscopy of Silicon Dioxide Films Grown under Negative Corona Stress. Journal of Applied Physics, 94, 2308-2310.
https://doi.org/10.1063/1.1593222
[33]
Günther, P. and Xia, Z. (1993) Transport of Detrapped Charges in Thermally Wet Grown SiO2 Electrets. Journal of Applied Physics, 74, 7269-7274.
https://doi.org/10.1063/1.354992
Fei, Y., Xu, Z. and Chen, C. (2001) Charge Storage Stability of SiO/Sub 2/ Film Electret. Proceedings. IEEE SoutheastCon 2001, Clemson, 1 April 2001, 1-7.
https://doi.org/10.1109/SECON.2001.923077
[36]
Minami, T., Utsubo, T., Yamatani, T. and Miyata, T. (2003) SiO2 Electret Thin Films Prepared by Various Deposition Methods. Thin Solid Films, 426, 47-52.
https://doi.org/10.1016/S0040-6090(02)01302-0
[37]
Yuan, N. and Li, J. (2005) SiO2 Film Electret with High Surface Potential Stability. Applied Surface Science, 252, 455-460. https://doi.org/10.1016/j.apsusc.2005.01.025
[38]
Hohm, D. and Gerhard-Multhaupt, R. (1984) Silicon-Dioxide Electret Transducer. The Journal of the Acoustical Society of America, 75, 1297-1298.
https://doi.org/10.1121/1.390738
[39]
Yamasaki, T., Hidekazu, K. and Yoshinobu, Y. (2008) Electret Condenser Microphones for Hearing Aids. 13th International Symposium on Electrets, Tokyo, 15-17 September 2008, C134. https://doi.org/10.1109/ISE.2008.4814067
[40]
Shibata, Y., Sugiyama, T., Mimura, H. and Hashiguchi, G. (2015) In Situ Measurement of Charging Process in Electret-Based Comb-Drive Actuator and High-Voltage Charging. Journal of Microelectromechanical Systems, 24, 1052-1060.
https://doi.org/10.1109/JMEMS.2014.2379959
[41]
Kotrappa, P., Dempsey, J.C. and Ramsey, R.W. (1989) Electret Dosimeters and Their Applications in Radiation Measurements. Transactions of the American Nuclear Society, 60, 200-201.
[42]
Son, C. and Ziaie, B. (2006) Electret Based Wireless Micro Ionizing Radiation Dosimeter. 19th IEEE International Conference on Micro Electromechanical Systems, Istanbul, 22-26 January 2006, 610-613.
https://doi.org/10.1109/MEMSYS.2006.1627873
[43]
Hashiguchi, G., Nakasone, D., Sugiyama, T., Ataka, M. and Toshiyoshi, H. (2016) Charging Mechanism of Electret Film Made of Potassium-Ion-Doped SiO2. AIP Advances, 6, Article No. 035004. https://doi.org/10.1063/1.4943528
[44]
Yonggang, P., Zhongfu, X., Xiaoquin, Z. and Yewen, Z. (1999) Charge Storage Characteristic for Double Layer of Si/Sub 3/N/Sub 4//SiO/Sub 2/ and Single Layer of Si/Sub 3/N/Sub 4/. 10th International Symposium on Electrets, Delphi, 22-24 September 1999, 391-394. https://doi.org/10.1109/ISE.1999.832069
[45]
Feng, Y., Hagiwara, K., Iguchi, Y. and Suzuki, Y. (2012) Trench-Filled Cellular Parylene Electret for Piezoelectric Transducer. Applied Physics Letters, 100, Article No. 262901. https://doi.org/10.1063/1.4730952
[46]
Hagiwara, K., Goto, M., Iguchi, Y. and Tajima, T. (2012) Electret Charging Method Based on Soft X-Ray Photoionization for MEMS Transducers. IEEE Transactions on Dielectrics and Electrical Insulation, 19, 1291-1298.
https://doi.org/10.1109/TDEI.2012.6260003
[47]
Battaglia, C., Cuevas, A. and De wolf, S. (2016) High-Efficiency Crystalline Silicon Solar Cells: Status and Perspectives. Energy & Environmental Science, 9, 1552-1576.
https://doi.org/10.1039/C5EE03380B
[48]
Bonilla, S.R., Hoex, B., Hamer, P. and Wilshaw, R.P. (2017) Dielectric Surface Passivation for Silicon Solar Cells: A Review. Physica Status Solidi (A), 214, Article ID: 1700293. https://doi.org/10.1002/pssa.201700293
[49]
Saga, T. (2010) Advances in Crystalline Silicon Solar Cell Technology for Industrial Mass Production. NPG Asia Materials, 2, 96-102.
https://doi.org/10.1038/asiamat.2010.82
[50]
Glunz, S.W., Biro, D., Rein, S. and Warta, W. (1999) Field-Effect Passivation of the SiO2/Si Interface. Journal of Applied Physics, 86, 683-691.
https://doi.org/10.1063/1.370784
[51]
Aberle, A., Glunz, S. and Warta, W. (1992) Impact of Illumination Level and Oxide Parameters on Shockley-Read-Hall Recombination at the Si-SiO2 Interface. Journal of Applied Physics, 71, 4422-4431. https://doi.org/10.1063/1.350782
[52]
Bonilla, R.S., Reichel, C., Hermle, M., Hamer, P. and Wilshaw, P.R. (2017) Long Term Stability of C-Si Surface Passivation Using Corona Charged SiO2. Applied Surface Science, 412, 657-667. https://doi.org/10.1016/j.apsusc.2017.03.204
[53]
Nie, S., Bonilla, R.S. and Hameiri, Z. (2021) Unravelling the Silicon-Silicon Dioxide Interface under Different Operating Conditions. Solar Energy Materials and Solar Cells, 224, Article ID: 111021. https://doi.org/10.1016/j.solmat.2021.111021
[54]
Nie, S., Bonilla, R. and Hameiri, Z. (2020) Temperature-Dependent Characterization of Si-SiO2 Interface Passivation for Corona Charged Oxides.
https://apvi.org.au/solar-research-conference/wp-content/uploads/2021/03
[55]
Hook, T.B. (2018) Power and Technology Scaling into the 5 nm Node with Stacked Nanosheets. Joule, 2, 1-4. https://doi.org/10.1016/j.joule.2017.10.014
[56]
Hoff, A.M. and Oborina, E. (2006) Fast Non-Contact Dielectric Characterization for SiC MOS Processing. Materials Science Forum, 527-529, 1035-1038.
https://doi.org/10.4028/www.scientific.net/MSF.527-529.1035
[57]
Hoff, A.M., Oborina, E., Saddow, S.E. and Savtchouk, A. (2004) Thermal Oxidation of 4H-Silicon Using the Afterglow Method. Materials Science Forum, 457-460, 1349-1352. https://doi.org/10.4028/www.scientific.net/MSF.457-460.1349
[58]
Oborina, E.I. and Hoff, A.M. (2010) Noncontact Interface Trap Determination of SiO2-4H-SiC Structures. Journal of Applied Physics, 107, Article No. 013703.
https://doi.org/10.1063/1.3272081
[59]
Weinberg, Z.A., Johnson, W.C. and Lampert, M. (1976) High-Field Transport in SiO2 on Silicon Induced by Corona Charging of the Unmetallized Surface. Journal of Applied Physics, 47, 248-255. https://doi.org/10.1063/1.322307
[60]
Weinberg, Z.A. (1977) Tunneling of Electrons from Si into Thermally Grown SiO2. Solid-State Electronics, 20, 11-18. https://doi.org/10.1016/0038-1101(77)90027-2
[61]
Weinberg, Z.A. (1982) On Tunneling in Metal-Oxide-Silicon Structures. Journal of Applied Physics, 53, 5052-5056. https://doi.org/10.1063/1.331336
[62]
Edelman, P., Wilson, M., D’Amico, J., Savtchouk, A. and Lagowski, J. (2008) Band Offset Diagnostics of Advanced Dielectrics. Journal of Material Science: Materials in Electronics, 19, 73-78. https://doi.org/10.1007/s10854-007-9558-0
[63]
Brattain, W.H. and Bardeen, J. (1953) Surface Properties of Germanium. The Bell System Technical Journal, 32, 1-41.
https://doi.org/10.1002/j.1538-7305.1953.tb01420.x
[64]
Garrett, C.G.B. and Brattain, W.H. (1955) Physical Theory of Semiconductor Surfaces. Physical Review, 99, 376-387. https://doi.org/10.1103/PhysRev.99.376
[65]
Moss, T.S. (1955) XIII. Photovoltaic and Photoconductive Theory Applied to InSb. Journal of Electronics and Control, 1, 126-133.
https://doi.org/10.1080/00207215508961396
[66]
Brattain, W.H. and Garrett, C.G.B. (1956) Combined Measurements of Field Effect, Surface Photo-Voltage and Photoconductivity. The Bell System Technical Journal, 35, 1019-1040. https://doi.org/10.1002/j.1538-7305.1956.tb03816.x
[67]
Johnson, E.O. (1957) Measurement of Minority Carrier Lifetimes with the Surface Photovoltage. Journal of Applied Physics, 28, 1349-1353.
https://doi.org/10.1063/1.1722650
[68]
Quillet, A. and Gorsar, P. (1960) L’effet photovoltaique de surface dans le silicium et son application à la mesure de la durée de vie des porteurs minoritaires. Journal de Physique et Le Radium, 21, 575-580.
https://doi.org/10.1051/jphysrad:01960002107057500
[69]
Goodman, A.M. (1961) A Method for the Measurement of Short Minority Carrier Diffusion Lengths in Semiconductors. Journal of Applied Physics, 32, 2550-2552.
https://doi.org/10.1063/1.1728351
[70]
Goodman, A.M., Goodman, L.A. and Grossenberg, H.F. (1983) Silicon Wafer Process Evaluation Using Minority Carrier Diffusion Length Measurement by the SPV Method. RCA Review, 44, 326-341.
https://archive.org/details/sim_rca-review_1983-06_44_2
[71]
American Society for Testing Materials (1996) ASTM F 391-96.
[72]
American Society for Testing Materials (1997) ASTM F 28-91.
[73]
American Society for Testing Materials (1994) ASTM F 1535-94.
[74]
Komin, V.V. (2003) Status of Non-Contact Electrical Measurements. AIP Conference Proceedings, 683, 782-795. https://doi.org/10.1063/1.1622559
Marinskiy, D., Lagowski, J., Wilson, M., Jastrzebski, L. and Busk, D.D. (1999) Small Signal AC-Surface Photovoltage Technique for Non-Contact Monitoring of Near Surface Doping and Recombination-Generation in the Depletion Layer. MRS Proceedings, 591, 218-223. https://doi.org/10.1557/PROC-591-225
[77]
Lagowski, J., Edelman, P. and M. Wilson M.D. (2000) US Patent No. 6,037,797.
[78]
Lenahan, P.M. and Dressendorfer, P.V. (1984) Hole Traps and Trivalent Silicon Centers in Metal/Oxide/Silicon Devices. Journal of Applied Physics, 55, 3495-3499.
https://doi.org/10.1063/1.332937
[79]
Lenahan, P.M. and Dressendorfer, P.V. (1982) Effect of Bias on Radiation-Induced Paramagnetic Defects at the Silicon-Silicon Dioxide Interface. Applied Physics Letters, 41, 542-544. https://doi.org/10.1063/1.93583
[80]
Lenahan, P.M. and Dressendorfer, P.V. (1983) An Electron Spin Resonance Study of Radiation-Induced Electrically Active Paramagnetic Centers at the Si/SiO2 Interface. Journal of Applied Physics, 54, 1457-1460. https://doi.org/10.1063/1.332171
[81]
Kim, Y.Y. and Lenahan, P.M. (1988) Electron-Spin-Resonance Study of Radiation-Induced Paramagnetic Defects in Oxides Grown on (100) Silicon Substrates. Journal of Applied Physics, 64, 3551-3557. https://doi.org/10.1063/1.341494
[82]
Gerardi, J.G., Poindexter, H.E. and Caplan, J. P. (1986) Interface Traps and Pb Centers in Oxidized (100) Silicon Wafers. Applied Physics Letters, 49, 348-350.
https://doi.org/10.1063/1.97611
[83]
Warren, W.L. and Lenahan, P.M. (1986) Electron Spin Resonance Study of High Field Stressing in Metal-Oxide-Silicon Device Oxides. Applied Physics Letters, 49, 1296-1298. https://doi.org/10.1063/1.97391
[84]
Warren, W.L. and Lenahan, P.M. (1987) A Comparison of Positive Charge Generation in High Field Stressing and Ionizing Radiation on MOS Structures. IEEE Transactions on Nuclear Science, 34, 1355-1358.
https://doi.org/10.1109/TNS.1987.4337479
[85]
Stesmans, A. and Afanas’ev, V.V. (2003) Invasive Nature of Corona Charging on Thermal Si/SiO2 Structures with Nanometer-Thick Oxides Revealed by Electron Spin Resonance. Applied Physics Letters, 82, 2835-2837.
https://doi.org/10.1063/1.1540245
[86]
Dautrich, M.S., Lenahan, P.M., Kang, A.Y. and Conley Jr., J.F. (2004) Noninvasive Nature of Corona Charging on Thermal Si∕SiO2 Structures. Applied Physics Letters, 85, 1844-1845. https://doi.org/10.1063/1.1789576
[87]
Jin, H., Weber, K., Dang, N.C. and Jellette, W.E. (2007) Defect Generation at the Si-SiO2 Interface Following Corona Charging. Applied Physics Letters, 90, Article No. 262109. https://doi.org/10.1063/1.2749867
[88]
Lenahan, P.M. and Conley Jr., J.F. (1997) A Model of Hole Trapping in SiO2 Films on Silicon. Journal of Applied Physics, 81, 6822-6824.
https://doi.org/10.1063/1.365438
[89]
Conley, J.F., Lenahan, P.M., Wallace, B.D. and Cole, P. (1997) Quantitative Model of Radiation Induced Charge Trapping in SiO/Sub 2/. IEEE Transactions on Nuclear Science, 44, 1804-1809. https://doi.org/10.1109/23.658946
[90]
Lenahan, P.M. and Conley, J.F. (1997) A Physically Based Predictive Model of Si/SiO2 Interface Trap Generation Resulting from the Presence of Holes in the SiO2. Applied Physics Letters, 71, 3126-3128. https://doi.org/10.1063/1.120284
[91]
Lenahan, P.M., Mele, J.J., Conley Jr., J.F., Lowry, R.K. and Woodbury, D. (1999) Predicting Radiation Response from Process Parameters: Verification of a Physically Based Predictive Model. IEEE Transactions on Nuclear Science, 46, 1534-1543.
https://doi.org/10.1109/23.819118
[92]
Yang, F., Jewell-Larsen, N.E., Brown, D.L., Pendergrass, K., Parker, D.A., Krichtafovitch, I.A. and Mamishev, A.V. (2003) Corona Driven Air Propulsion for Cooling of Electronics. Proceedings of the XIIIth International Symposium on High Voltage Engineering, Delft, Netherlands, 25-29 August 2003.
[93]
Cogollo, M., Balsalobre, M.P., Lantada, A.D. and Puago, H. (2020) Design and Experimental Evaluation of Innovative Wire-to-Plane Fins’ Configuration for Atmosphere Corona-Discharge Cooling Devices. Applied Science, 10, Article No.1010.
https://doi.org/10.3390/app10031010
[94]
Tsui, Y., Wei, T. and Wang, C. (2020) A Novel Means Combining Corona Discharge and Electrostatic Force-Induced Vibration for Convective Heat Transfer. Journal of Heat Transfer, 142, Article No. 082102.
https://doi.org/10.1115/1.4046971
[95]
Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanematsu, M., Uzu, H. and Yamamoto, K. (2017) Silicon Heterojunction Solar Cell with Interdigitated Back Contacts for a Photoconversion Efficiency over 26%. Nature Energy, 2, Article No. 17032.
https://doi.org/10.1038/nenergy.2017.32
[96]
Masuko, K., Shigematsu, M., Hashiguchi, T., Fujishima, D., Kai, M., Yoshimura, N., Yamaguchi, T., Ichihashi, Y., Mishima, T., Matsubara, N., Yamanishi, T., Takahama, T., Taguchi, M., Maruyama, E. and Okamoto, S. (2014) Achievement of More than 25% Conversion Efficiency with Crystalline Silicon Heterojunction Solar Cell. IEEE Journal of Photovoltaics, 4, 1433-1435.
https://doi.org/10.1109/JPHOTOV.2014.2352151
[97]
Fraunhofer ISE (2017) Annual Report.
https://www.ise.fraunhofer.de/content/dam/ise/en/documents/annual_reports/fraunhofer-ise-annual-report-2017-2018.pdf
[98]
Mathews, I., Lei, S. and Frizzell, R. (2020) Predicted Annual Energy Yield of III-V/c-Si Tandem Solar Cells: Modelling the Effect of Changing Spectrum on Current-Matching. Optics Express, 28, 7829-7842. https://doi.org/10.1364/OE.384620