全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Overview of the Geological Control on Groundwater Potential in Lacamutu River, Alaua Kraik Area, Baucau Municipality, Timor-Leste

DOI: 10.4236/jwarp.2022.1410036, PP. 680-697

Keywords: Local Geology, Resistivity Interpretation, Groundwater Potential, Rainfall, Lacamutu River—Alaua Kraik Area—Timor-Leste

Full-Text   Cite this paper   Add to My Lib

Abstract:

Timor island has a tropical climate with relatively little rainfall and surface water is often not available throughout the year with groundwater relied on to fulfill daily domestic necessities. Geological reconnaissance mapping, hydrogeological investigation, and resistivity survey were undertaken in this study to systematically understand the hydrogeologic system (e.g., aquifer system, hydrostratigraphic units, groundwater flow direction) and its potentiality for water supply to human consumption in Alaua Kraik area, Baucau Municipality, Timor-Leste. Res2DInv, Dips 5.1, Surfer 16, Global Mapper 13, and ArcGIS 10.6 software was used to create geological reconnaissance maps, resistivity interpretation profile lines, and a hydrostratigraphic model. Rainfall precipitation, rainfall intensity, maximum rate of runoff and infiltration data are also used to interpret the groundwater potential in the study area. Two rock units occur in the study area; permeable alluvial deposits which unconformable overlie impermeable interbedded red marl-chert and calcareous shale. Structurally the area comprises the Lacamutu anticline, thrust fault, left slip fault, and normal right slip fault. Resistivity lines indicate three (3) types of lithologies: alluvial deposit, an intercalated layer of red marl-chert, calcareous shale and wet calcareous shale. The alluvial deposit and red marl-chert layer intercalated with calcareous shale units are classified as a hydrostratigraphic unit of intergranular and localised aquifer systems with low productivity. The groundwater flows through the existing fractures of the shear joint and tends to flow towards the left slip fault plane zone from the North to South direction. Much of the rainwater in the study area is most likely intercepted, evaporated, and or transpiration as opposed to running off and infiltrating into the ground. The permeable and heavily fractured impermeable rock units in the study area have good porosity but low permeability and represent poor aquifers. The springs and Lacamutu River have low discharge and are generally dry in the dry season as it does not have an adequate aquifer that can accumulate and pass groundwater with significant volumes even if the rainfall in the study area is classified as moderate rainfall.

References

[1]  Preeja, K.R., Joseph, S., Thomas, J. and Vijith, H. (2011) Identification of Groundwater Potential Zones of a Tropical River Basin (Kerala, India) Using Remote Sensing and GIS Techniques. Journal of Indian Society Remote Sensing, 39, 83-94.
https://doi.org/10.1007/s12524-011-0075-5
[2]  Hussein, A.Z., Govindu, V. and Nigusse, A.G.M. (2016) Evaluation of Groundwater Potential Using Geospatial Techniques. Applied Water Science, 7, 2447-2461.
https://doi.org/10.1007/s13201-016-0433-0
[3]  Todd, D.K. and Mays, L.W. (2005) Groundwater Hydrology. 3rd Edition, Wiley, New York, 636.
[4]  Okello, C., Tomasello, B., Greggio, N., Wambiji, N. and Antonellini, M. (2015) Impact of Population Growth and Climate Change on the Freshwater Resources of Lamu Island, Kenya. Water, 7, 1264-1290.
https://doi.org/10.3390/w7031264
[5]  Celik, R. (2019) Evaluation of Groundwater Potential by GIS-Based Multicriteria Decision Making as a Spatial Prediction Tool: Case Study in the Tigris River Batman-Hasankeyf Sub-Basin, Turkey. Water, 11, Article No. 2630.
https://doi.org/10.3390/w11122630
[6]  Fainstein, R., Rosario, J.D.D.C., Guterres, H.C., Reis, R.P. and Costa, L.T. (2020) Coastal and Offshore Provinces of Timor-Leste—Geophysics Exploration and Drilling. The Leading Edge, 39, 543-550.
https://doi.org/10.1190/tle39080543.1
[7]  Kumar, A., Sharma, M.P. and Yadav, N.S. (2014) Assessment of Water Quality Changes at Two Locations of Chambal River: M.P. Journal of Materials and Environmental Science, 5, 1781-1785.
[8]  Rajaveni, S.P., Brindha, K. and Elango, L. (2015) Geological and Geomorphological Controls on Groundwater Occurence in a Hard Rock Region. Applied Water Science, 7, 1377-1389.
https://doi.org/10.1007/s13201-015-0327-6
[9]  Kumar, A., Sharma, M.P. and Taxak, A.K. (2017) Analysis of Water Environment Changing Trend in Bhagirathi Tributary of Ganges in India. Desalination and Water Treatment, 63, 55-62.
https://doi.org/10.5004/dwt.2017.20159
[10]  Kumar, A., Taxak, A.K., Mishra, S. and Pandey, R. (2021) Long Term Trend Analysis and Suitability of Water Quality of River Ganga at Himalayan Hills of Uttarakhand, India. Environmental Technology & Innovation, 22, Article ID: 101405.
https://doi.org/10.1016/j.eti.2021.101405
[11]  Khan, M.Y.A., ElKashouty, M., Subyani, A.M., Tian, F. and Gusti W. (2022) GIS and RS Intelligence in Delineating the Groundwater Potential Zones in Arid Regions; A Case Study of Southern Aseer, Southwestern Saudi Arabia. Applied Water Science, 12, Article No. 3.
https://doi.org/10.1007/s13201-021-01535-w
[12]  IPG-TL (2022) Groundwater Resources Identification for Water Supply to the Community in Baguia Administrative Post, Baucau Municipality, Instituto do Petróleo e Geologia—Instituto Publico (IPG-IP) Division of Hydrogeology & Mineral Resources, Hydrogeology Team, Rua Delta I, Aimutin, Comoro, Dili, Timor-Leste, Unpublished Report.
[13]  Hamilton, W. (1979) Tectonics of the Indonesian Region. USGS Numbered Series No. 1078, U.S. Government Publishing Office, Washington DC, 1-335.
https://doi.org/10.3133/pp1078
[14]  Harris, R.A. (2006) Rise and Fall of the Eastern Great Indonesian Arc Recorded by the Assembly, Dispersion and Accretion of the Banda Terrane, Timor. Gondwana Research, 10, 207-231.
https://doi.org/10.1016/j.gr.2006.05.010
[15]  Audley-Charles, M.G. (2011) Tectonic Post-Collision Processes in Timor. Geological Society, London, Special Publications, 355, 241-266.
https://doi.org/10.1144/SP355.12
[16]  Hall, R. and Sevastjanova, I. (2012) Australian Crust in Indonesian. Australian Journal of Earth Sciences, 59, 827-844.
https://doi.org/10.1080/08120099.2012.692335
[17]  Sevastjanova, I., Hall, R., Rittner, M., Paw, S.M.T.L., Naing, T.T., Alderton, D.H. and Comfort, G. (2016) Myanmar and Asia United, Australia Left Behind Long Ago. Gondwana Research, 32, 24-40.
https://doi.org/10.1016/j.gr.2015.02.001
[18]  Haig, D.W., Rigaud, S., McCartain, E., Martini, R., Barros, I.S., Brisbout, L., Soares, J., Nano, J. (2021) Upper Triassic Carbonate-Platform Facies, Timor-Leste: Foraminiferal Indices and Regional Tectonostratigraphic Association. Palaeogeography, Palaeoclimatology, Palaeoecology, 570, Article ID: 110362.
https://doi.org/10.1016/j.palaeo.2021.110362
[19]  Audley-Charles, M.G. (1968) The Geology of Portuguese Timor. Geological Society, London, Memoirs, 4, 4-84.
https://doi.org/10.1144/GSL.MEM.1968.004.01.02
[20]  Partoyo, E., Hermanto, B. and Bachri, S. (1995) Geological Map of Baucau Quadrangle, East Timor. Geological Research and Development Centre, Indonesia.
[21]  Todd, D.K. (1980) Groundwater Hydrology. 2nd Edition, John Willey & Sons, New York.
[22]  Asdak, C. (2007) Hidrologi dan Pengelolaan Daerah Aliran Sungai, Edisi VI. Gadjah Mada University Press, Daerah Istimewa Yogyakarta.
[23]  Irawan, D.E. and Puradimaja, D.J. (2015) Hidrogeologi Umum, Perpustakaan Nasional: Katalog Dalam Terbitan, Penerbit Ombak, Yogyakarta.
[24]  Prastistho, B., Pratiknyo, P., Rodhi, A., Prasetyadi, C., Ridwan Massora, M. and Kurnia Munandar, Y. (2018) Hubungan Struktur Geologi dan Sistem Airtanah, Kementrian Riset, Teknologi dan Pendidikan Tinggi, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Lembaga Penelitian dan Pengabdian Kepada Masyarakat.
[25]  Freeze, R.A. and Cherry, J.A. (1979) Groundwater. Prentice-Hall Inc., Englewood Cliffs.
[26]  Earle, S. and Panchuk, K. (2019) Physical Geology: Chapter 14. Groundwater. 2nd Edition, BCcampus, Victoria, 454-pp.
[27]  Suharyadi (1984) Geohidrologi (Ilmu Air Tanah) Fakultas Teknik, Universitas Gadja Mada, Yogyakarta.
[28]  Fajana, A.O. (2020) Groundwater Aquifer Potential Using Electrical Resistivity Method and Porosity Calculation: A Case Study. NRIAG Journal of Astronomy and Geophysics, 9, 168-175.
https://doi.org/10.1080/20909977.2020.1728955
[29]  Loke, M.H. (2004) Tutorial: 2-D and 3-D Electrical Imaging Surveys. GeotomoSoftware.
[30]  Palacky, G.J. (1988) 3. Resistivity Characteristics of Geologic Targets. In: Nabighian, M.N., Ed., Electromagnetic Methods in Applied Geophysics: Theory, Vol. 1, Society of Exploration Geophysicists, Houston, 53-129.
https://doi.org/10.1190/1.9781560802631.ch3
[31]  Telford, W.M. (1976) Applied Geophysics. Cambridge University Press, Cambridge.
[32]  Suyono, S. (1978) Hidrologi Untuk Pengairan, PT. Pradnya Paramita, Jakarta.
[33]  Telford, W.M. Geldart, L.P., Sheriff, R.E. and Keys, D.A. (1990) Applied Geophysics. 2nd Edition, Cambridge University Press, Cambridge, 770 p.
[34]  DNGRA [Diresaun Nasional do Gestaun da Recurso da Agua] (2019) Annual Report of Daily Data: Total Daily Rainfall from the year 2010-2018, Rainfall Station of Baguia Administrative Post - Municipality Baucau, Diresaun Nasional do Gestaun da Recurso da Agua (DNGRA).
[35]  Hudson, N.W. (1993) Field Measurement of Soil Erosion and Runoff. Food and Agriculture Organization of the United Nations, Rome.
[36]  Hill, J. (2002) Evaluation of Rational Method “C”, Update for Manual Revision.
[37]  Rickard, M. (1972) Fault Classification: Discussion. GSA Bulletin, 83, 2545-2546.
https://doi.org/10.1130/0016-7606(1972)83[2545:FCD]2.0.CO;2
[38]  Fluety, M.J. (1964) The Description of Folds. Proceedings of the Geologist’ Association, 75, 461-492.
https://doi.org/10.1016/S0016-7878(64)80023-7
[39]  Wallace, L., Sundaram, B., Brodie, R.S., Marshall, S., Dawson, S., Jaycock, J., Stewart, G. and Furness, L. (2012) Vulnerability Assessment of Climate Change Impacts on Groundwater Resources in Timor-Leste: Summary Report. Geoscience Australia, Canberra.
https://doi.org/10.11636/Record.2012.055
[40]  Singhal, B.B.S. and Gupta, R.P. (2010) Applied Hydrogeology of Fractured Rocks. 2nd Edition, Springer, Dordrecht, Heidelberg, London.
https://doi.org/10.1007/978-90-481-8799-7
[41]  BMKG [Badan Meteorologi, Klimatologi, dan Geofisika] (2008) Curah Hujan dan Potensi Gerakan Tanah. Badan Meteorologi, Klimatologi dan Geofisika, Indonesia.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133