|
光声换能器的材料组成及应用进展
|
Abstract:
光声换能器是近年来迅速发展的一种新型器件,它可以将吸收的光能转换为声能并以超声波的形式发射出去。相比于传统压电型超声换能器,光声换能器具有灵敏度高、带宽大、制作工艺简单等优点,在工业无损检测和医学成像领域具有巨大的应用潜力。本文就近年光声换能器的材料组成、制作方法和应用进展进行了综述。
Photoacoustic transducer is a kind of new device developing rapidly in recent years. It can convert absorbed light energy into sound energy and emit it in the form of ultrasonic wave. Compared with the traditional piezoelectric ultrasonic transducer, the photoacoustic transducer has the advantages of high sensitivity, large bandwidth, simple fabrica-tion process and so on, thus leading to the great application potential in industrial non-destructive testing and medical imaging. In this paper, the material composition, fabrication methods and ap-plication progress of photoacoustic transducers in recent years are reviewed.
[1] | Hsieh, B.-Y., Kim, J., Zhu, J., Li, S., Zhang, X. and Jiang, X. (2015) A Laser Ultrasound Transducer Using Carbon Nanofibers-Polydimethylsiloxane Composite Thin Film. Applied Physics Letters, 106, Article ID: 021902.
https://doi.org/10.1063/1.4905659 |
[2] | Yao, J.J. (2017) When Pressure Meets Light: Detecting the Photoacoustic Effect at the Origin. Light: Science & Applications, 6, e17062. https://doi.org/10.1038/lsa.2017.62 |
[3] | Bai, W. and Diebold, G.J. (2018) Photoacoustic Effect Generated from an Expanding Spherical Source. International Journal of Thermophysics, 39, Article No. 32. https://doi.org/10.1007/s10765-017-2351-2 |
[4] | Li, J., Yang, Y., Chen, Z., Lei, S., Shen, M., Zhang, T., Lan, X., Qin, Y., Ou-Yang, J., Yang, X., Chen, Y., Wang, Z. and Zhu, B. (2020) Self-Healing: A New Skill Unlocked for Ultrasound Transducer. Nano Energy, 68, Article ID: 104348. https://doi.org/10.1016/j.nanoen.2019.104348 |
[5] | Lee, T., Baac, H.W., Li, Q. and Guo, L.J. (2018) Efficient Pho-toacoustic Conversion in Optical Nanomaterials and Composites. Advanced Optical Materials, 6, Article ID: 1800491. https://doi.org/10.1002/adom.201800491 |
[6] | Firpo, G., Angeli, E., Repetto, L. and Valbusa, U. (2015) Permeabil-ity Thickness Dependence of Polydimethylsiloxane (PDMS) Membranes. Journal of Membrane Science, 481, 1-8. https://doi.org/10.1016/j.memsci.2014.12.043 |
[7] | Li, J., Lan, X., Lei, S., Ou-Yang, J., Yang, X. and Zhu, B. (2019) Effects of Carbon Nanotube Thermal Conductivity on Optoacoustic Transducer Performance. Carbon, 145, 112-118. https://doi.org/10.1016/j.carbon.2019.01.025 |
[8] | Buma, T., Spisar, M. and O’donnell, M. (2001) High-Frequency Ultrasound Array Element Using Thermoelastic Expansion in an Elastomeric Film. Applied Physics Let-ters, 79, 548-550. https://doi.org/10.1063/1.1388027 |
[9] | Colchester, R.J., Mosse, C.A., Bhachu, D.S., Bear, J.C., Carmalt, C., Parkin, I.P., Treeby, B.E., Papakonstantinou, I. and Desjardins, A.E. (2014) Laser-Generated Ultrasound with Optical Fibres Using Functionalised Carbon Nanotube Composite Coatings. Applied Physics Letters, 104, Article ID: 173502. https://doi.org/10.1063/1.4873678 |
[10] | Chang, W.Y., Huang, W., Kim, J., Li, S. and Jiang, X. (2015) Candle Soot Nanoparticles-Polydimethylsiloxane Composites for Laser Ultrasound Transducers. Applied Physics Letters, 107, Article ID: 161903.
https://doi.org/10.1063/1.4934587 |
[11] | Tian, Y., Wu, N., Zou, X., Felemban, H., Cao, C. and Wang, X. (2013) Fiber-Optic Ultrasound Generator Using Periodic Gold Nanopores Fabricated by a Focused Ion Beam. Optical Engi-neering, 52, Article ID: 065005.
https://doi.org/10.1117/1.OE.52.6.065005 |
[12] | Hwan Lee, S., Park, M.-A., Yoh, J.J., Song, H., Yun Jang, E., Hyup Kim, Y., Kang, S. and Seop Yoon, Y. (2012) Reduced Graphene Oxide Coated Thin Aluminum Film as an Opto-acoustic Transmitter for High Pressure and High Frequency Ultrasound Generation. Applied Physics Letters, 101, Article ID: 241909. https://doi.org/10.1063/1.4772498 |
[13] | Hidayat, D., Syafei, N.S., Wibawa, B.M., Taufik, M., Bahtiar, A. and Risdiana (2020) Metal-Polymer Composite as an Acoustic Attenuating Material for Ultrasonic Transducers. Key Engineering Materials, 860, 303-309.
https://doi.org/10.4028/www.scientific.net/KEM.860.303 |
[14] | Tian, Y., Wu, N., Sun, K., Zou, X. and Wang, X. (2013) Numerical Simulation of Fiber-Optic Photoacoustic Generator Using Nanocomposite Material. Journal of Com-putational Acoustics, 21, Article ID: 1350002.
https://doi.org/10.1142/S0218396X13500021 |
[15] | 赵传欣, 陈高云, 顾恰敏, 刘敏. 碳纳米管及其复合材料的应用研究进展[J]. 现代盐化工, 2021, 48(4): 22-25. |
[16] | Baac, H.W., Lee, T. and Guo, J. (2015) Nano-Structural Characteristics of Carbon Nanotube-Polymer Composite Films for High-Amplitude Optoacoustic Generation. Nanoscale, 7, 14460-14468. https://doi.org/10.1039/C5NR03769G |
[17] | Zhukov, A.V., Bouffanais, R., Konobeeva, N.N. and Belonenko, M.B. (2016) Opto-Acoustic Effects in an Array of Carbon Nanotubes. Journal of Applied Physics, 120, Ar-ticle ID: 134307. https://doi.org/10.1063/1.4964445 |
[18] | Ran, W.R., Hui, X., Jing, Z.J., Na, X.L., Shen, S.Z. and Yuan, L.Y. (2020) Photoacoustic Properties of Carbon Nanotubes-Polydimethylsiloxane. Spectroscopy and Spectral Analysis, 40, 2079-2086. |
[19] | Syahril, S., Sri, O. and Yoshifumi, S. (2018) A Theoretical Model of Laser Heating Car-bon Nanotubes. Nanomaterials, 8, Article No. 580. https://doi.org/10.3390/nano8080580 |
[20] | Fan, X., Baek, Y., Ha, K., Kim, M., Kim, J., Kim, D., Kang, H.W. and Oh, J. (2017) Propagation Characteristics of Shock Waves from a Plane Carbon-Nanotube-Coated Optoacoustic Transducer in Water. Japanese Journal of Applied Physics, 56, 07JB05. https://doi.org/10.7567/JJAP.56.07JB05 |
[21] | Won Baac, H., Ok, J.G., Park, H.J., Ling, T., Chen, S.L., Hart, A.J. and Guo, L.J. (2010) Carbon Nanotube Composite Optoacoustic Transmitters for Strong and High Frequency Ultra-sound Generation. Applied Physics Letters, 97, Article ID: 234104. https://doi.org/10.1063/1.3522833 |
[22] | Chen, Z., et al. (2018) Multilayered Carbon Nanotube Yarn Based Optoacoustic Transducer with High Energy Conversion Ef-ficiency for Ultrasound Application. Nano Energy, 46, 314-321.
https://doi.org/10.1016/j.nanoen.2018.02.006 |
[23] | Moon, C., Fan, X., Ha, K. and Kim, D. (2017) Generation of Planar Blast Waves Using Carbon Nanotubes-Poly-Di- methylsiloxane Optoacoustic Transducer. AIP Advances, 7, Arti-cle ID: 015107.
https://doi.org/10.1063/1.4974748 |
[24] | Yang, S.T., Cao, L., Luo, P.G., Lu, F. and Sun, Y.P. (2009) Carbon Dots for Optical Imaging in Vivo. Journal of the American Chemical Society, 131, 11308-11309. https://doi.org/10.1021/ja904843x |
[25] | Chang, W.Y., Zhang, X.A., Kim, J., Huang, W., Bagal, A., Chang, C.H., Fang, T., Wu, H.F. and Jiang, X. (2018) Evaluation of Photoacoustic Transduction Efficiency of Candle Soot Nanocom-posite Transmitters. IEEE Transactions on Nanotechnology, 17, 985-993. https://doi.org/10.1109/TNANO.2018.2845703 |
[26] | Yu, K., Devkota, T., Beane, G., Wang, G.P. and Hartland, G.V. (2017) Brillouin Oscillations from Single Au Nanoplate Opto-Acoustic Transducers. ACS Nano, 11, 8064-8071. https://doi.org/10.1021/acsnano.7b02703 |
[27] | Lee, T. and Guo, L.J. (2017) Highly Efficient Photoacoustic Con-version by Facilitated Heat Transfer in Ultrathin Metal Film Sandwiched by Polymer Layers. Advanced Optical Materials, 5, Article ID: 1600421.
https://doi.org/10.1002/adom.201600421 |
[28] | Colchester, R.J., Zhang, E.Z., Alles, E.J., Beard, P.C. and Desjardins, A.E. (2016) Carbon-Nanotube-PDMS Composite Coatings on Optical Fibers for All-Optical Ultrasound Imaging. Ad-vanced Functional Materials, 26, 8390-8396.
https://doi.org/10.1002/adfm.201601337 |
[29] | Lipomi, D.J., Martinez, R.V., Kats, M.A., Kang, S.H., Kim, P., Aizenberg, J., Ca Passo, F. and Whitesides, G.M. (2011) Patterning the Tips of Optical Fibers with Metallic Nanostruc-tures Using Nanoskiving. Nano Letters, 11, 632-636.
https://doi.org/10.1021/nl103730g |
[30] | Baac, H.W., Ok, J.G., Maxwell, A., Lee, K.T., Chen, Y.C., Hart, A.J., Xu, Z., Yoon, E. and Guo, L.J. (2012) Carbon-Nanotube Optoacoustic Lens for Focused Ultrasound Generation and High-Precision Targeted Therapy. Scientific Reports, 2, Article No. 989. https://doi.org/10.1038/srep00989 |
[31] | Lee, T., Ok, G.J., Guo, J.L. and Baac, W.H. (2016) Low f-Number Photo-acoustic Lens for Tight Ultrasonic Focusing and Free-Field Micro-Cavitation in Water. Applied Physics Letters, 108, Ar-ticle ID: 104102.
https://doi.org/10.1063/1.4943369 |
[32] | Vannacci, E., et al. (2014) Miniaturized Fiber-Optic Ultrasound Probes for Endoscopic Tissue Analysis by Micro-Op- to-Mechanical Technology. Biomedical Microdevices, 16, 415-426. https://doi.org/10.1007/s10544-014-9844-6 |
[33] | Belsito, L., Vannacci, E., Mancarella, F., Ferri, M., Veronese, G.P., Biagi, E. and Roncaglia, A. (2014) Fabrication of Fiber-Optic Broadband Ultrasound Emitters by Mi-cro-Opto-Mechanical Technology. Journal of Micromechanics and Microengineering, 24, Article ID: 085003. https://doi.org/10.1088/0960-1317/24/8/085003 |
[34] | Li, J., Xu, J., Liu, X., Zhang, T., Lei, S., Jiang, L., Ou-Yang, J., Yang, X. and Zhu, B. (2020) A Novel CNTs Array-PDMS Composite with Anisotropic Thermal Conductivity for Optoacoustic Transducer Applications. Composites Part B: Engineering, 196, Article ID: 108073. https://doi.org/10.1016/j.compositesb.2020.108073 |
[35] | Zou, X., Wu, N., Tian, Y. and Wang, X. (2014) Broad-band Miniature Fiber Optic Ultrasound Generator. Optics Express, 22, 18119-18127. https://doi.org/10.1364/OE.22.018119 |
[36] | Taruttis, A. and Ntziachristos, V. (2015) Advances in Real-Time Mul-tispectral Optoacoustic Imaging and Its Applications. Nature Photonics, 9, 219-227. https://doi.org/10.1038/nphoton.2015.29 |
[37] | Hsieh, B.Y., Chen, S.L., Ling, T., Guo, L.J. and Li, P.C. (2012) All-Optical Scanhead for Ultrasound and Photoacoustic Dual-Modality Imaging. Optics Express, 20, 1588-1596. https://doi.org/10.1364/OE.20.001588 |
[38] | Bychkov, A., Simonova, V., Zarubin, V., Cherepetskaya, E. and Ka-rabutov, A. (2018) The Progress in Photoacoustic and Laser Ultrasonic Tomographic Imaging for Biomedicine and In-dustry: A Review. Applied Sciences, 8, Article No. 1931. https://doi.org/10.3390/app8101931 |
[39] | Di, J., Kim, J., Hu, Q., Jiang, X. and Gu, Z. (2015) Spatiotemporal Drug Delivery Using Laser-Generated-Focused Ultrasound System. Journal of Controlled Release, 220, 592-599. https://doi.org/10.1016/j.jconrel.2015.08.033 |
[40] | Karki, A., Gid-dings, E., Carreras, A., Champagne, D., Fortner, K., Rincon, M. and Wu, J. (2019) Sonoporation as an Approach for siRNA Delivery into T Cells. Ultrasound in Medicine & Biology, 45, 3222-3231.
https://doi.org/10.1016/j.ultrasmedbio.2019.06.406 |
[41] | Zeng, W., Wang, F., Miao, L., You, F. and Yao, F. (2020) Laser Ultrasonic Melanoma Detection in Human Skin Tissues via Pearson Correlation Coefficient. Optik, 222, Article ID: 165478. https://doi.org/10.1016/j.ijleo.2020.165478 |
[42] | Jathoul, A.P., Laufer, J., Ogunlade, O., Treeby, B., Cox, B., Zhang, E., Johnson, P., Pizzey, A.R., Philip, B. and Marafioti, T. (2015) Photoacoustic Imaging of Mammalian Tis-sues Using a Tyrosinase-Based Genetic Reporter. Nature Photonics, 9, 239-246. https://doi.org/10.1038/nphoton.2015.22 |
[43] | Zeng, W., Lu, T., Liu, Z., Xu, Q. and Yao, F.J. (2021) Research on a Laser Ultrasonic Visualization Detection Method for Human Skin Tumors Based on Pearson Correlation Coefficient. Optics Laser Technology, 141, Article ID: 107117.
https://doi.org/10.1016/j.optlastec.2021.107117 |
[44] | Kim, J., Chang, W.Y., Lindsey, B.D., Dayton, P.A. and Jiang, X. (2016) Laser-Generated-Focused Ultrasound Transducers for Microbubble-Mediated, Dual-Excitation Sonothrombo-lysis. Proceedings of the 2016 IEEE International Ultrasonics Symposium (IUS), Tours, 18-21 September 2016, 1-4. https://doi.org/10.1109/ULTSYM.2016.7728473 |
[45] | Dhiman, D. and Manojit, P. (2019) Combined Ultrasound and Photoacoustic Imaging of Blood Clot during Microbubble-Assisted Sonothrombolysis. Journal of Biomedical Optics, 24, Article ID: 121902.
https://doi.org/10.1117/1.JBO.24.12.121902 |
[46] | Baac, H.W., Lee, T., Ok, J.G. and Hall, T. (2013) Du-al-Frequency Focused Ultrasound Using Optoacoustic and Piezoelectric Transmitters for Single-Pulsed Free-Field Cavi-tation in Water. Applied Physics Letters, 103, Article ID: 234103. https://doi.org/10.1063/1.4836315 |
[47] | Baac, H.W., Lee, T. and Guo, L.J. (2013) Micro-Ultrasonic Cleaving of Cell Clusters by Laser-Generated Focused Ultrasound and Its Mechanisms. Biomedical Optics Express, 4, 1442-1450. https://doi.org/10.1364/BOE.4.001442 |
[48] | 王君, 随力, 蔡爱楠, 吴永亮. 超声刺激参数在超声神经调控中的作用[J]. 中国医学物理学杂志, 2018, 35(2): 236. |
[49] | 冯湘君, 罗凯旋, 高一平, 敖丽娟. 聚焦超声在神经系统调控中的应用研究进展[J]. 山东医药, 2020, 60(9): 100-103. |
[50] | 李茜, 陈雪莹, 王冬. 低强度聚焦超声神经调控作用研究进展[J]. 中国医学影像技术, 2021, 37(7): 1078-1081. |
[51] | Lee, J., Paeng, D.G. and Ha, K. (2020) Attenuation of the Human Skull at Broadband Frequencies by Using a Carbon Nanotube Composite Photoacoustic Transducer. The Journal of the Acoustical Society of America, 148, 1121-1129.
https://doi.org/10.1121/10.0001791 |
[52] | 丁广鑫, 夏慧, 刘国强, 李晓南. 基于碳纳米管复合薄膜光声换能器的磁声电无损检测[J]. 电工技术学报, 2019, 34(13): 2709-2715. |
[53] | Ding, X., Li, W., Xiong, J., Shen, Y. and Huang, W. (2020) A Flexible Laser Ultrasound Transducer for Lamb Wave- Based Structural Health Monitoring. Smart Materials and Structures, 29, Article ID: 075006.
https://doi.org/10.1088/1361-665X/ab85e0 |
[54] | Kou, X., Pei, C. and Chen, Z. (2021) Fully Noncontact Inspection of Closed Surface Crack with Nonlinear Laser Ultrasonic Testing Method. Ultrasonics, 114, Article ID: 106426. https://doi.org/10.1016/j.ultras.2021.106426 |
[55] | Ji, B.P., et al. (2021) Application of Laser Ultrasonic for Detect-ing Delamination in Cu/Al Composites. Optik, 243, Article ID: 167426. https://doi.org/10.1016/j.ijleo.2021.167426 |
[56] | Qing, X. (2021) A New Laser Ultrasonic Inspection Method for the Detection of Multiple Delamination Defects. Materials, 14, Article No. 2424. https://doi.org/10.3390/ma14092424 |
[57] | Ji, B., Zhang, Q., Cao, J., Zhang, B. and Zhang, L. (2021) Delamination Detection in Bimetallic Composite Using Laser Ultrasonic Bulk Waves. Applied Sciences, 11, Article No. 636. https://doi.org/10.3390/app11020636 |