全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

亚热带森林蕨类植物生物量分配策略的海拔适应性
Altitudinal Adaptation of Biomass Allocation of Ferns in Subtropical Forests

DOI: 10.12677/WJF.2022.114025, PP. 200-205

Keywords: 根状茎,蕨类植物,生物量投资,海拔
Rhizomes
, Ferns, Biomass Allocation, Altitude

Full-Text   Cite this paper   Add to My Lib

Abstract:

为揭示蕨类植物生物量分配策略,本文以浙江金华山蕨类植物为研究对象,沿海拔梯度进行取样,分析蕨类植物在不同器官(根、根状茎、叶)的生物量分配特征,并进一步探讨各器官生物量分配权衡的海拔变化规律以及温度、光照适应性。结果显示:1) 生物量在不同器官的分配格局表现为根状茎 > 叶 > 根,根状茎生物量占比最大,是叶与根的2~7倍;2) 随着海拔上升,叶、根以及根状茎生物量没有发生显著变化;3) 随海拔上升和温度下降,根状茎生物量占比逐渐增大,叶、根的生物量占比逐渐减小;生物量分配权衡与林冠层盖度(光照)没有关系。以上结果表明,蕨类根状茎的储存功能可能是蕨类植物适应海拔环境变化的重要策略。
This study takes ferns from Jinhuashan in Zhejiang as the research object, and reveals the biomass allocation strategy and the environ-mental adaptability of underground storage organs of ferns. Sampling was carried out along the al-titude gradient to analyze the biomass allocation characteristics of ferns in different organs (roots, rhizomes and leaves), and to further explore the altitude variation patterns of biomass allocation and temperature and light adaptations of each organ. The results showed that: 1) The patterns of biomass allocation in different organs showed that rhizomes > leaves > roots, and rhizome biomass accounted for the largest proportion, which was 2~7 times that of leaves and roots. 2) Biomass of roots, leaves and rhizomes did not change significantly with increasing altitude. 3) With the in-crease of altitude and the decrease of temperature, the biomass proportion of rhizomes gradually increased, and the biomass proportions of leaves and roots gradually decreased. The biomass allo-cation strategy was not related to canopy cover (light). The storage function of fern rhizomes may be an important strategy for ferns to adapt to altitude changes.

References

[1]  李春香, 陆树刚, 杨群. 蕨类植物起源与系统发生关系研究进展[J]. 植物学通报, 2004, 21(4): 478-485.
[2]  Watkins, J.E., Rundel, P.W. and Cardelús, C.L. (2007) The Influence of Life form on Carbon and Nitro-gen Relationships in Tropical Rainforest Ferns. Oecologia, 153, 225-232.
https://doi.org/10.1007/s00442-007-0723-1
[3]  崔桂友. 中国的食用蕨类资源与开发利用[J]. 中国烹饪研究, 1998, 15(1): 21-28.
[4]  Ma, L.Q., Komar, K.M., Tu, C., Zhang, W., Cai, Y. and Kennelley, E.D. (2001) A Fern that Hyperaccumulates Arsenic. Nature, 409, 579-579.
https://doi.org/10.1038/35054664
[5]  王玲, 和兆荣. 药用蕨类植物化学成分研究进展[J]. 中国野生植物资源, 2006, 25(3): 1-4.
[6]  梁梦芳, 刘何铭, 江山, 陈开超, 陈云奇, 杨庆松. 林下密集蕨类层生态学研究进展[J]. 热带亚热带植物学报, 2022, 30(2): 291-300.
[7]  周喜乐, 张宪春, 孙久琼, 严岳鸿. 中国石松类和蕨类植物的多样性与地理分布[J]. 生物多样性, 2016, 24(1): 102-107.
[8]  孙磊, 李斌奇, 刘萍, 次仁央培.不同海拔高寒草甸地下生物量分配格局研究[J]. 高原农业, 2018, 2(6): 589-593+617.
[9]  马婧婧, 刘耘华, 盛建东, 李宁, 武红旗, 贾宏涛, 孙宗玖, 程军回. 新疆草地优势种植物相对生物量沿海拔梯度变化特征[J]. 草业学报, 2021, 30(8): 25-35.
[10]  Guo, W., Song, Y.B. and Yu, F.H. (2011) Heterogeneous Light Supply Affects Growth and Biomass Allocation of the Understory Fern Diplopterygiumg laucum at High Patch Contrast. PLOS ONE, 6, e27998.
https://doi.org/10.1371/journal.pone.0027998
[11]  邱志军, 刘鹏, 刘春生, 高建国. 金华北山常绿阔叶林群落结构及优势乔木树种更新类型[J]. 广西植物, 2010, 30(5): 629-635.
[12]  孙晶琦, 王世超, 刘雨菲, 陈泉, 卢华正, 巩合德. 蕨类植物的克隆性及其生态功能[J]. 西部林业科学, 2019, 48(3): 110-115.
[13]  K?rner, C. (2003) Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. 2nd Edition, Springer-Verlag, Heidelberg.
[14]  马维玲, 石培礼, 李文华, 何永涛, 张宪洲, 沈振西. 青藏高原高寒草甸植株性状和生物量分配的海拔梯度变异[J]. 中国科学: 生命科学, 2010, 40(6): 533-543.
[15]  Xiong, F., Nie, X., Yang, L., Wang, L., Li, J., Zhou, G., et al. (2021) Biomasspartitioning Pattern of Rheum tanguticum on the Qinghai-Tibet Plateau was Affected by Water-Related Factors. Plant Ecology, 222, 499-509.
https://doi.org/10.1007/s11258-021-01122-8
[16]  Weiser, M., Koubek, T., and Herben, T. (2016) Root Foraging Performance and Life-History Traits. Frontiers in Plant Science, 7, 779.
https://doi.org/10.3389/fpls.2016.00779

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133