全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于YOLOv5的新冠肺炎疾病的检测
Detection of COVID-19 Disease Based on YOLOv5

DOI: 10.12677/HJBM.2022.124033, PP. 271-278

Keywords: 新冠肺炎,胸部异常检测,图像检测,YOLOv5算法模型,医学检测
COVID-19
, Chest Abnormalities Detection, Image Detection, YOLOv5 Algorithm Model, Medical Detection

Full-Text   Cite this paper   Add to My Lib

Abstract:

新冠肺炎是一种流行性的传染性疾病,世界各国都在爆发。随着病例数量的逐渐增多,医生的压力也逐渐增大,人工智能的日渐深入研究与不断发展,国内外专家学者也都致力于将计算机辅助检测与诊断应用于医学影像领域的研究,并且在医学之中应用范围逐渐扩大,为了缓解医生的对于确诊病例的诊断,本文采用YOLOv5对病人的CT图像进行标注,以辅助医生诊断。通过实验证实,采用YOLOv5算法可以有效地对新冠肺炎疾病与正常肺部进行判断,有效精准地预测了实验结果,经过三十轮的数据检测,预测的mAP_0.5达到了99.5%,mAP_0.5:0.95达到99.1%。利用YOLOv5计算机辅助医学检测将有助于提升对新冠肺炎疾病准确快速的检测。
COVID-19 is an epidemic infectious disease that is breaking out in countries all over the world. With the gradual increase of the number of cases, the pressure of doctors is increasing, and the deepening research and continuous development of artificial intelligence, experts and scholars at home and abroad are also committed to applying computer-aided detection and diagnosis to the research of medical imaging, and the application scope in medicine is gradually expanding. In order to alleviate the doctors’ diagnosis of confirmed cases, this paper uses YOLOv5 to mark the CT images of patients to assist doctors in diagnosis. The experiment proved that the YOLOv5 algorithm can effectively judge the COVID-19 disease and normal lungs, and effectively and accurately predict the experimental results. After 30 rounds of data detection, the predicted mAP_0.5 reached 99.5%, and mAP_0.05:0.95 reached 99.1%. The use of YOLOv5 computer-aided medical testing will help to improve the accurate and rapid detection of COVID-19.

References

[1]  Qu, R., Yang, Y. and Wang, Y. (2022) COVID-19 Detection Using CT Image Based on YOLOv5 Network. 2021 3rd International Academic Exchange Conference on Science and Technology Innovation, Guangzhou, 10-12 December 2021, 622-625.
https://doi.org/10.1109/IAECST54258.2021.9695714
[2]  Belal Hossain, Md., Hasan Sazzad Iqbal, S.M., Monirul Islam, Md., Nasim Akhtar, Md., Sarker, I.H. (2022) Transfer Learning with Fine-Tuned Deep CNN ResNet50 Model for classifyingcovid-19 from Chest X-Ray Images. Informatics in Medicine Unlocked, 30, 100916.
https://doi.org/10.1016/j.imu.2022.100916
[3]  翁羽洁, 李忠贤, 姬宇程, 薄素玲, 梁莹. 基于改进阈值的VGG网络的新冠肺炎CT图像自动诊断算法[J]. 中国医学物理学杂志, 2022(6): 731-736.
[4]  韩璐, 毕晓军. 基于增强特征融合YOLOv5的视网膜病变检测[J]. 应用科技, 2022(1): 66-72.
[5]  李惠民. 肺结节CT研究[D]: [博士学位论文]. 上海: 第二军医大学, 2003.
[6]  陈弘扬, 高敬阳, 赵地, 等. 深度学习与生物医学图像分析2020年综述[J]. 中国图像图形学报, 2021, 26(3): 475-486.
[7]  鞠默然, 罗海波, 王仲博, 何淼, 常铮, 惠斌. 改进的YOLOv3算法及其在小目标检测中的应用[J]. 光学学报, 2019, 39(7): 245-252.
[8]  YOLOv5 GitHub.
https://github.com/ultralytics/yolov5
[9]  邵延华, 张铎, 楚红雨, 张晓强, 饶云波. 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报, 2022, 44(10): 1-12.
[10]  Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I. and Savarese, S. (2019) Generalized Intersection over Union: A Metric and a Loss for Bounding Box Regression. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Beach, 15-20 June 2019, 658-666.
https://doi.org/10.1109/CVPR.2019.00075
[11]  Zheng, Z.H., Wang, P., Liu, W., Li, J.Z., Ye, R.G. and Ren, D.W. (2020) Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 12993-13000.
[12]  Malta, A., Mendes, M. and Farinha, T. (2021) Augmented Reality Maintenance Assistant Using YOLOv5. Applied Sciences, 11, 4758.
https://doi.org/10.3390/app11114758

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133