|
Material Sciences 2022
ZIF-67衍生的NiCo-LDH@NF用于高性能超级电容器正极的性能研究
|
Abstract:
金属有机骨架(MOFs)具有良好的孔隙率和可调节的形态,是制备高性能层状双氢氧化物(LDHs)的优良牺牲模板。本文首先通过共沉淀方法在泡沫镍上生长的ZIF-67@NF作为模板,再以乙醇为质子溶剂,通过溶剂热法成功制备镍钴层状双氢氧化物(NiCo-LDH@NF)。由于所制备NiCo-LDH纳米片相互交错在一起形成大量空隙,显著缩短了离子的扩散距离;直接与泡沫镍基底相接触,大大地提高了NiCo-LDH的导电性。改善的离子、电子输运使得NiCo-LDH@NF复合电极材料在电流密度为1 A?g?1时展现出1378.7 F?g?1的高比容量。并且,在电流密度为10 A?g?1时,电容保持率为63.4%。本文报道了一种高性能的LDHs电极材料,为超级电容器电极材料的开发提供了新的思路。
Metal organic frameworks (MOFs) have good porosity and adjustable morphology, which are always used as ex-cellent sacrificial templates to derive high-performance layered double hydroxides (LDHs). In this paper, a ZIF-67 template was first prepared by coprecipitation method using Ni foam as a substrate. And then, NiCo-LDH@NF composite material was synthesized via a solvothermal approach with ethanol as a protic solvent. Because the NiCo-LDH nanosheets interleaved with each other to form a large number of voids, the ion diffusion distance was significantly shortened. And the electrical conductivity of NiCo-LDH is greatly improved by directly contacting the Ni foam substrate. The im-proved ion and electron transport enables NiCo-LDH@NF composite electrode a high specific capac-ity of 1378.7 F?g?1 at a current density of 1 A?g?1, and maintain 63.4% capacity at a current density of 10 A?g?1. This work reports a high performance LDHs electrode material, which provides a new idea for the development of electrode materials for supercapacitors.
[1] | Rahmanifar, M.S., Hesari, H., Noori, A., Masoomi, M.Y., Morsali, A. and Mousavi, M.F. (2018) A Dual Ni/Co-MOF- Reduced Graphene Oxide Nanocomposite as a High Performance Supercapacitor Electrode Material. Electrochimica Acta, 275, 76-86. https://doi.org/10.1016/j.electacta.2018.04.130 |
[2] | Xie, M., Zhou, M., Zhang, Y., Du, C., Chen, J. and Wan, L. (2022) Freestanding Trimetallic Fe-Co-Ni Phosphide Nanosheet Arrays as an Advanced Electrode for High‐Performance Asymmetric Supercapacitors. Journal of Colloid and Interface Science, 608, 79-89. https://doi.org/10.1016/j.jcis.2021.09.159 |
[3] | Gao, X., Wang, P., Pan, Z., Claverie, J.P. and Wang, J. (2020) Re-cent Progress in Two‐Dimensional Layered Double Hydroxides and Their Derivatives for Supercapacitors. ChemSus-Chem, 13, 1226-1254.
https://doi.org/10.1002/cssc.201902753 |
[4] | Zhang, X., Lu, W., Tian, Y., Yang, S., Zhang, Q., Lei, D. and Zhao, Y. (2022) Nanosheet-Assembled NiCo-LDH Hollow Spheres as High-performance Electrodes for Supercapacitors. Journal of Colloid and Interface Science, 606, 1120-1127. https://doi.org/10.1016/j.jcis.2021.08.094 |
[5] | Wang, M., Feng, Y., Zhang, Y., Li, S., Wu, M., Xue, L. and Mi, J. (2022) Ion Regulation of Hollow Nickel Cobalt Layered Double Hydroxide Nanocages Derived from ZIF-67 for High-Performance Supercapacitors. Applied Surface Science, 596, Article ID: 153582. https://doi.org/10.1016/j.apsusc.2022.153582 |
[6] | Mukhiya, T., Tiwari, A.P., Chhetri, K., Kim, T., Dahal, B., Muthurasu, A. and Kim, H.Y. (2021) A Metal-Organic Framework Derived Cobalt Ox-ide/Nitrogen-Doped Carbon Nanotube Nanotentacles on Electrospun Carbon Nanofiber for Electrochemical Energy Storage. Chemical Engineering Journal, 420, Article ID: 129679.
https://doi.org/10.1016/j.cej.2021.129679 |
[7] | Liu, Y., Wang, Y., Shi, C., Chen, Y., Li, D., He, Z. and Ma, J. (2020) Co-ZIF Derived Porous NiCo-LDH Nanosheets/N Doped Carbon Foam for High-Performance Supercapacitor. Carbon, 165, 129-138.
https://doi.org/10.1016/j.carbon.2020.04.084 |
[8] | Li, L., Zhang, M., Zhang, X. and Zhang, Z. (2017) New Ti3C2 Aerogel as Promising Negative Electrode Materials for Asymmetric Supercapacitors. Journal of Power Sources, 364, 234-241. https://doi.org/10.1016/j.jpowsour.2017.08.029 |
[9] | Yang, Q., Liu, Y., Xiao, L., Yan, M., Bai, H., Zhu, F. and Shi, W. (2018) Self-Templated Transformation of MOFs Into Layered Double Hydroxide Nanoarrays with Selec-tively Formed Co9S8 for High-Performance Asymmetric Supercapacitors. Chemical Engineering Journal, 354, 716-726. https://doi.org/10.1016/j.cej.2018.08.091 |
[10] | Luo, W., Chen, W., Quan, H., Zhang, Z.X., Zeng, Y., Wang, Y. and Chen, D. (2022) Strongly Coupled Carbon Quantum Dots/NiCo-LDHs Nanosheets on Carbon Cloth as Electrode for High Performance Flexible Supercapacitors. Applied Surface Science, 591, Article ID: 153161. https://doi.org/10.1016/j.apsusc.2022.153161 |
[11] | Yao, J., Xu, D., Ma, X., Xiao, J., Zhang, M. and Gao, H. (2022) Trimetallic CoNiFe-Layered Double Hydroxides: Electronic Coupling Effect and Oxygen Vacancy for Boosting Water Splitting. Journal of Power Sources, 524, Article ID: 231068. https://doi.org/10.1016/j.jpowsour.2022.231068 |
[12] | He, Y., Zhang, X., Wang, J., Sui, Y., Qi, J., Chen, Z. and Liu, W. (2021) Constructing Co(OH)F Nanorods@ NiCo‐LDH Nanocages Derived from ZIF‐67 for High‐Performance Su-percapacitors. Advanced Materials Interfaces, 8, Article ID: 2100642. https://doi.org/10.1002/admi.202100642 |
[13] | Shi, C., Du, Y., Guo, L., Yang, J. and Wang, Y. (2022) Construction of Interconnected NiCo Layered Double Hydroxides/Metal-Organic Frameworks Hybrid Nanosheets for High-Performance Supercapacitor. Journal of Energy Storage, 48, Article ID: 103961. https://doi.org/10.1016/j.est.2022.103961 |
[14] | Li, X., Li, Z., Lu, L., Huang, L., Xiang, L., Shen, J. and Xiao, D.R. (2017) The Solvent Induced Inter‐Dimensional Phase Transformations of Cobalt Zeolitic‐Imidazolate Frameworks. Chemistry—A European Journal, 23, 10638-10643.
https://doi.org/10.1002/chem.201701721 |
[15] | Wang, G., Li, Y., Zhao, T. and Jin, Z. (2021) Phosphatized Mild-Prepared-NiCo LDHs Cabbage-Like Spheres Exhibit Excellent Performance as a Supercapacitor Electrode. New Journal of Chemistry, 45, 251-261.
https://doi.org/10.1039/D0NJ03070H |
[16] | Ma, M., Cai, W., Chen, Y., Li, Y., Tan, F. and Zhou, J. (2021) Flow-er-Like NiMn-Layered Double Hydroxide Microspheres Coated on Biomass-Derived 3D Honeycomb Porous Carbon for High-Energy Hybrid Supercapacitors. Industrial Crops and Products, 166, Article ID: 113472. https://doi.org/10.1016/j.indcrop.2021.113472 |
[17] | Chen, Y., Guo, H., Yang, F., Wu, N., Zhang, J., Peng, L., et al. (2022) Ni@NC@NiCo-LDH Nanocomposites from a Sacrificed Template Ni@NC@ZIF-67 for High Performance Su-percapacitor. International Journal of Hydrogen Energy, 47, 29636-29647. |
[18] | Du, Q., Su, L., Hou, L., Sun, G., Feng, M., Yin, X. and Gao, W. (2018) Rationally Designed Ultrathin Ni-Al Layered Double Hydroxide and Graphene Hetero-structure for High-Performance Asymmetric Supercapacitor. Journal of Alloys and Compounds, 740, 1051-1059. https://doi.org/10.1016/j.jallcom.2018.01.069 |
[19] | Zou, J., Xie, D., Xu, J., Song, X., Zeng, X., Wang, H. and Zhao, F. (2022) Rational Design of Honeycomb Ni-Co LDH/Graphene Composite for Remarkable Supercapacitor via Ultrafast Microwave Synthesis. Applied Surface Science, 571, Article ID: 151322. https://doi.org/10.1016/j.apsusc.2021.151322 |
[20] | Zang, Y., Luo, H., Zhang, H. and Xue, H. (2021) Polypyrrole Nanotube-Interconnected NiCo-LDH Nanocages Derived by ZIF-67 for Supercapacitors. ACS Applied Energy Materials, 4, 1189-1198. https://doi.org/10.1021/acsaem.0c02465 |