全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Late Time Behavior of the Cosmological Model in Modified Theory of Gravity

DOI: 10.4236/jhepgc.2022.84072, PP. 1019-1031

Keywords: f (R,T) Gravity, Bianchi Type VIh, Perfect Fluid

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report a viable exponential gravity model for the accelerated expansion of the universe in Bianchi VIh space-time. By considering the estimated physical parameters, the cosmological models are constructed and analyzed in detail. We found that the state parameter in both the models increases to a higher negative range in an early epoch of the phantom domain and it goes to the positive domain at a late phase of the evolution. The effective cosmological constant remains in a positive domain for both models, which is a good sign of accelerating expansion of the universe.

References

[1]  Penzias, A.A. and Wilson, R.W. (1965) A Measurement of Excess Antenna Temperature at 4080 m/s. The Astrophysical Journal, 142, 419-421.
https://doi.org/10.1086/148307
[2]  Schmidt, B.P., et al. (1998) The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae. The Astronomical Journal, 507, 46-63.
https://doi.org/10.1086/306308
[3]  Riess, A.G., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116, 1009-1038.
https://doi.org/10.1086/300499
[4]  Perlmutter, S., et al. (1999) Measurements of Omega and Lambda from 42 High-Redshift Supernovae. The Astrophysical Journal, 517, 565-586.
[5]  Ratra, B. and Peebles, P.J.E. (1988) Cosmological Consequences of a Rolling Homogeneous Scalar Field. Physical Review D, 37, 3406-3427.
https://doi.org/10.1103/PhysRevD.37.3406
[6]  Sahni, V. and Starobinsky, A. (2000) The Case for a Positive Cosmological Lambda Term. International Journal of Modern Physics D, 9, 373-444.
https://doi.org/10.1142/S0218271800000542
[7]  Caldwell, R.R. (2002) A Phantom Menace? Cosmological Consequences of a Dark Energy Component with Super-Negative Equation of State. Physics Letters B, 545, 23-29.
https://doi.org/10.1016/S0370-2693(02)02589-3
[8]  Caldwell, R.R., Kamionkowski, M. and Weinberg, N.N. (2003) Phantom Energy and Cosmic Doomsday. Physical Review Letters, 91, Article ID: 071301.
https://doi.org/10.1103/PhysRevLett.91.071301
[9]  Armendariz-Picon, C., et al. (2000) Dynamical Solution to the Problem of a Small Cosmological Constant and Late-Time Cosmic Acceleration. Physical Review Letters, 85, 4438-4441.
https://doi.org/10.1103/PhysRevLett.85.4438
[10]  Armendariz-Picon, C., et al. (2001) Essentials of k-Essence. Physical Review D, 63, Article ID: 103510.
https://doi.org/10.1103/PhysRevD.63.103510
[11]  Sen, A. (2002) Rolling Tachyon. Journal of High Energy Physics, 204, 48.
https://doi.org/10.1088/1126-6708/2002/04/048
[12]  Feng, B., et al. (2005) Dark Energy Constraints from the Cosmic Age and Supernova. Physics Letters B, 607, 35-41.
https://doi.org/10.1016/j.physletb.2004.12.071
[13]  Guo, Z., et al. (2005) Parametrization of Quintessence and Its Potential. Physical Review D, 72, Article ID: 023504.
https://doi.org/10.1103/PhysRevD.72.023504
[14]  Abbott, B.P., et al. (2016) Observation of Gravitational Waves from a Binary Black Hole Merger (LIGO Collaboration). Physical Review Letters, 116, Article ID: 061102.
[15]  Abbott, B.P., et al. (2016) Astrophysical Implications of the Binary Black-Hole Merger (LIGO Collaboration). The Astrophysical Journal Letters, 818, L22.
[16]  Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282.
https://doi.org/10.1142/S0218271809015904
[17]  Cappozziello, S. and De Laurentis, M. (2011) Extended Theories of Gravity. Physics Reports, 509, 167-321.
https://doi.org/10.1016/j.physrep.2011.09.003
[18]  Bamba, K., et al. (2012) Dark Energy Cosmology: The Equivalent Description via Different Theoretical Models and Cosmography Tests. Astrophysics and Space Science, 342, 155-228.
https://doi.org/10.1007/s10509-012-1181-8
[19]  Clifton, T., et al. (2012) Modified Gravity and Cosmology. Physics Reports, 513, 1-189.
https://doi.org/10.1016/j.physrep.2012.01.001
[20]  Sotiriou, T.P. and Faraoni, V. (2010) f(R) Theories of Gravity. Reviews of Modern Physics, 82, 451-497.
https://doi.org/10.1103/RevModPhys.82.451
[21]  Nojiri, S. and Odintsov, S.D. (2006) Modified f(R) Gravity Consistent with Realistic Cosmology: From a Matter Dominated Epoch to a Dark Energy Universe. Physical Review D, 74, Article ID: 086005.
https://doi.org/10.1103/PhysRevD.74.086009
[22]  Nojiri, S. and Odintsov, S.D. (2007) Introduction to Modified Gravity and Gravitational Alternative for Dark Energy. International Journal of Geometric Methods in Modern Physics, 4, 115-146.
https://doi.org/10.1142/S0219887807001928
[23]  Linder, E.V. (2010) Einstein’s Other Gravity and the Acceleration of the Universe. Physical Review D, 82, Article ID: 109902.
https://doi.org/10.1103/PhysRevD.82.109902
[24]  Myrzakulov, R. (2011) Accelerating Universe from f(T) Gravity. The European Physical Journal C, 71, Article No. 1752.
https://doi.org/10.1140/epjc/s10052-011-1752-9
[25]  Sheng-Feng, Y., et al. (2020) Interpreting Cosmological Tensions from the Effective Field Theory of Torsional Gravity. Physical Review D, 101, Article ID: 121301.
https://doi.org/10.1103/PhysRevD.101.121301
[26]  Cai, Y.F., Khurshudyan, M. and Saridakis, E.N. (2020) Model-Independent Reconstruction of f(T) Gravity from Gaussian Processes. The Astrophysical Journal, 888, Article No. 62.
https://doi.org/10.3847/1538-4357/ab5a7f
[27]  Cai, Y.F., et al. (2018) f(T) Gravity after GW170817 and GRB170817A. Physical Review D, 97, Article ID: 103513.
https://doi.org/10.1103/PhysRevD.97.103513
[28]  Cai Y.F., et al. (2011) Matter Bounce Cosmology with the f(T) Gravity. Classical and Quantum Gravity, 28, Article ID: 215011.
https://doi.org/10.1088/0264-9381/28/21/215011
[29]  Cai, Y.F., Capozziello, M. and De Laurentis, M. (2016) f(T) Teleparallel Gravity and Cosmology. Reports on Progress in Physics, 79, Article ID: 106901.
https://doi.org/10.1088/0034-4885/79/10/106901
[30]  Nojiri, S. and Odintsov, S.D. (2005) Modified Gauss-Bonnet Theory as Gravitational Alternative for Dark Energy. Physics Letters B, 631, 1-6.
https://doi.org/10.1016/j.physletb.2005.10.010
[31]  Li, B., et al. (2007) Cosmology of Modified Gauss-Bonnet Gravity. Physical Review D, 76, Article ID: 044027.
https://doi.org/10.1103/PhysRevD.76.044027
[32]  Kofinas, G. and Saridakis, E.N. (2014) Teleparallel Equivalent of Gauss-Bonnet Gravity and Its Modifications. Physical Review D, 2014; 90, Article ID: 084044.
https://doi.org/10.1103/PhysRevD.90.084044
[33]  Harko, T., et al. (2011) f(R,T) Gravity. Physical Review D, 84, Article ID: 024020.
https://doi.org/10.1103/PhysRevD.84.024020
[34]  Myrzakulov, R. (2012) FRW Cosmology in f(R,T) Gravity. The European Physical Journal C, 72, Article No. 2203.
https://doi.org/10.1140/epjc/s10052-012-2203-y
[35]  Houndjo, M.J.S. and Piattella, O.F. (2012) Reconstructing f(R,T) Gravity from Holographic Dark Energy. International Journal of Modern Physics D, 21, Article ID: 1250024.
https://doi.org/10.1142/S0218271812500241
[36]  Yousaf, Z., Bamba, K. and Bhatti, M.Z. (2016) Causes of Irregular Energy Density in f(R,T) Gravity. Physical Review D, 93, Article ID: 124048.
https://doi.org/10.1103/PhysRevD.93.064059
[37]  Barrientos, J. and Rubilar, G.B. (2014) Comment on f(R,T) Gravity. Physical Review D, 90, Article ID: 028501.
https://doi.org/10.1103/PhysRevD.90.028501
[38]  Ahmed, N. and Pradhan, A. (2014) Bianchi Type-V Cosmology in f(R,T) Gravity with . International Journal of Theoretical Physics, 53, 289-306.
https://doi.org/10.1007/s10773-013-1809-7
[39]  Shamir, M.F. (2015) Exact Solutions of Bianchi Type V Spacetime in f(R,T) Gravity. International Journal of Theoretical Physics, 54, 1304-1315.
https://doi.org/10.1007/s10773-014-2328-x
[40]  Jamil, M., et al. (2012) Reconstruction of Some Cosmological Models in f(R,T) Cosmology. The European Physical Journal C, 72, Article No. 1999.
https://doi.org/10.1140/epjc/s10052-012-1999-9
[41]  Sharif, M. and Zubair, M. (2012) Anisotropic Universe Models with Perfect Fluid and Scalar Field in f(R,T) Gravity. Journal of the Physical Society of Japan, 81, Article ID: 114005.
https://doi.org/10.1143/JPSJ.81.114005
[42]  Bhatti, M.Z. and Yousaf, Z. (2019) Stability Analysis of Neutron Stars in Palatini f(R,T) Gravity. General Relativity and Gravitation, 51, Article No. 144.
https://doi.org/10.1007/s10714-019-2631-1
[43]  Tiwari, R.K., Sofuoglu, D. and Beesham, A. (2021) FRW Universe in f(R,T) Gravity. International Journal of Geometric Methods in Modern Physics, 18, Article ID: 2150104.
https://doi.org/10.1142/S0219887821501048
[44]  Mishra, B., Tarai, S. and Tripathy, S.K. (2016) Dynamics of an Anisotropic Universe in f(R,T) Theory. Advances in High Energy Physics, 2016, Article ID: 8543560.
https://doi.org/10.1155/2016/8543560
[45]  Ray, P.P., Tarai, S., Mishra, B. and Tripathy, S.K. (2021) Cosmological Models with Big Rip and Pseudo Rip Scenarios in Extended Theory of Gravity. Fortschritte der Physik, 69, Article ID: 2100086.
https://doi.org/10.1002/prop.202100086
[46]  Mishra, B., Tripathy, S.K. and Tarai, S. (2018) Cosmological Models with a Hybrid Scale Factor in an Extended Gravity Theory. Modern Physics Letters A, 33, Article ID: 1850052.
https://doi.org/10.1142/S0217732318500529
[47]  Mishra, B., Tarai, S. and Tripathy, S.K. (2018) Dynamical Features of an Anisotropic Cosmological Model. Indian Journal of Physics, 92, 1199.
https://doi.org/10.1007/s12648-018-1194-4
[48]  Mishra, B., Tarai, S. and Tripathy, S.K. (2018) Anisotropic Cosmological Reconstruction in f(R,T) Gravity. Modern Physics Letters A, 33, Article ID: 1850170.
https://doi.org/10.1142/S0217732318501705
[49]  Mishra, B., Tarai, S. and Pacif, S.K.J. (2018) Dynamics of Bianchi VIh Universe with Bulk Viscous Fluid in Modified Gravity. International Journal of Geometric Methods in Modern Physics, 15, Article ID: 1850036.
https://doi.org/10.1142/S0219887818500366
[50]  Mishra, B., Ribeiro, G. and Moraes, P.H.R.S. (2019) De Sitter and Bounce Solutions from Anisotropy in Extended Gravity Cosmology. Modern Physics Letters A, 34, Article ID: 1950321.
https://doi.org/10.1142/S0217732319503218
[51]  Tripathy, S.K. and Mishra, B. (2020) Phantom Cosmology in an Extended Theory of Gravity. Chinese Journal of Physics, 63, 448-458.
https://doi.org/10.1016/j.cjph.2019.12.022
[52]  Eingorn, M. and Zhuk, A. (2012) Hubble Flows and Gravitational Potentials in Observable Universe. Journal of Cosmology and Astroparticle Physics., 9, 26.
https://doi.org/10.1088/1475-7516/2012/09/026
[53]  Eingorn, M., et al. (2013) Dynamics of Astrophysical Objects against the Cosmological Background. Journal of Cosmology and Astroparticle Physics., 4, 10.
https://doi.org/10.1088/1475-7516/2013/04/010
[54]  Eingorn, M. and Zhuk, A. (2014) Remarks on Mechanical Approach to Observable Universe. Journal of Cosmology and Astroparticle Physics., 5, 24.
https://doi.org/10.1088/1475-7516/2014/05/024
[55]  Sahni, V., et al. (2003) Statefinder—A New Geometrical Diagnostic of Dark Energy. Journal of Experimental and Theoretical Physics, 77, 201-206.
https://doi.org/10.1134/1.1574831
[56]  Montiel, A., Salzano, V. and Lazkoz, R. (2014) Observational Constraints on the Unified Dark Matter and Dark Energy Model Based on the Quark Bag Model. Physics Letters B, 733, 209-216.
https://doi.org/10.1016/j.physletb.2014.04.048
[57]  Cai, Y.-F. (2014) Exploring Bouncing Cosmologies with Cosmological Surveys. Science China Physics, Mechanics & Astronomy, 57, 1414-1430.
https://doi.org/10.1007/s11433-014-5512-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133